STRINGSTRING
lepA protein (Spirosoma linguale) - STRING interaction network
"lepA" - GTP-binding protein LepA in Spirosoma linguale
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
lepAGTP-binding protein LepA; Required for accurate and efficient protein synthesis under certain stress conditions. May act as a fidelity factor of the translation reaction, by catalyzing a one-codon backward translocation of tRNAs on improperly translocated ribosomes. Back- translocation proceeds from a post-translocation (POST) complex to a pre-translocation (PRE) complex, thus giving elongation factor G a second chance to translocate the tRNAs correctly. Binds to ribosomes in a GTP-dependent manner (595 aa)    
Predicted Functional Partners:
obg
GTP-binding protein Obg/CgtA; An essential GTPase which binds GTP, GDP and possibly (p)ppGpp with moderate affinity, with high nucleotide exchange rates and a fairly low GTP hydrolysis rate. Plays a role in control of the cell cycle, stress response, ribosome biogenesis and in those bacteria that undergo differentiation, in morphogenesis control (334 aa)
   
   
  0.907
prfA
Peptide chain release factor 1; Peptide chain release factor 1 directs the termination of translation in response to the peptide chain termination codons UAG and UAA (357 aa)
 
   
  0.884
rplM
50S ribosomal protein L13; This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly (147 aa)
 
 
  0.846
der
Ribosome-associated GTPase EngA; GTPase that plays an essential role in the late steps of ribosome biogenesis (435 aa)
 
 
  0.834
prfB
Hypothetical protein; Peptide chain release factor 2 directs the termination of translation in response to the peptide chain termination codons UGA and UAA (358 aa)
 
 
  0.814
ftsH
ATP-dependent metalloprotease FtsH; Acts as a processive, ATP-dependent zinc metallopeptidase for both cytoplasmic and membrane proteins. Plays a role in the quality control of integral membrane proteins (676 aa)
 
   
  0.808
rplD
50S ribosomal protein L4; Forms part of the polypeptide exit tunnel (209 aa)
   
 
  0.804
rplT
50S ribosomal protein L20; Binds directly to 23S ribosomal RNA and is necessary for the in vitro assembly process of the 50S ribosomal subunit. It is not involved in the protein synthesizing functions of that subunit (114 aa)
 
   
  0.802
Slin_4178
aspartyl-tRNA synthetase (589 aa)
 
   
  0.800
rsmH
S-adenosyl-methyltransferase MraW; Specifically methylates the N4 position of cytidine in position 1402 (C1402) of 16S rRNA (301 aa)
 
   
  0.797
Your Current Organism:
Spirosoma linguale
NCBI taxonomy Id: 504472
Other names: S. linguale, S. linguale DSM 74, Spirosoma, Spirosoma linguale, Spirosoma linguale DSM 74, Spirosoma linguale str. DSM 74, Spirosoma linguale strain DSM 74
Server load: low (7%) [HD]