STRINGSTRING
pth protein (Spirosoma linguale) - STRING interaction network
"pth" - peptidyl-tRNA hydrolase in Spirosoma linguale
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
pthpeptidyl-tRNA hydrolase; The natural substrate for this enzyme may be peptidyl- tRNAs which drop off the ribosome during protein synthesis (186 aa)    
Predicted Functional Partners:
gatA
glutamyl-tRNA(Gln) amidotransferase subunit alpha; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu-tRNA(Gln) (479 aa)
   
 
    0.903
gatB
glutamyl-tRNA(Gln) amidotransferase subunit beta; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp- tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl-tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp-tRNA(Asn) or phospho-Glu-tRNA(Gln) (493 aa)
     
 
    0.903
gatC
glutamyl-tRNA(Gln) amidotransferase subunit C; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp- tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl-tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp-tRNA(Asn) or phospho-Glu-tRNA(Gln) (95 aa)
       
    0.901
frr
Ribosome recycling factor; Responsible for the release of ribosomes from messenger RNA at the termination of protein biosynthesis. May increase the efficiency of translation by recycling ribosomes from one round of translation to another (186 aa)
   
   
  0.828
prfA
Peptide chain release factor 1; Peptide chain release factor 1 directs the termination of translation in response to the peptide chain termination codons UAG and UAA (357 aa)
 
   
  0.799
ftsH
ATP-dependent metalloprotease FtsH; Acts as a processive, ATP-dependent zinc metallopeptidase for both cytoplasmic and membrane proteins. Plays a role in the quality control of integral membrane proteins (676 aa)
 
   
  0.784
recA
recA protein; Can catalyze the hydrolysis of ATP in the presence of single-stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage (364 aa)
 
   
  0.747
rplI
50S ribosomal protein L9; Binds to the 23S rRNA (147 aa)
 
   
  0.713
lepA
GTP-binding protein LepA; Required for accurate and efficient protein synthesis under certain stress conditions. May act as a fidelity factor of the translation reaction, by catalyzing a one-codon backward translocation of tRNAs on improperly translocated ribosomes. Back- translocation proceeds from a post-translocation (POST) complex to a pre-translocation (PRE) complex, thus giving elongation factor G a second chance to translocate the tRNAs correctly. Binds to ribosomes in a GTP-dependent manner (595 aa)
 
   
  0.712
Slin_4178
aspartyl-tRNA synthetase (589 aa)
 
   
  0.703
Your Current Organism:
Spirosoma linguale
NCBI taxonomy Id: 504472
Other names: S. linguale, S. linguale DSM 74, Spirosoma, Spirosoma linguale, Spirosoma linguale DSM 74, Spirosoma linguale str. DSM 74, Spirosoma linguale strain DSM 74
Server load: low (6%) [HD]