STRINGSTRING
Slin_3737 protein (Spirosoma linguale) - STRING interaction network
"Slin_3737" - NmrA family protein in Spirosoma linguale
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
Slin_3737NmrA family protein (294 aa)    
Predicted Functional Partners:
Slin_6042
NADH (or F420H2) dehydrogenase subunit C; NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (163 aa)
   
  0.991
Slin_5100
NADH (or F420H2) dehydrogenase subunit C; NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (166 aa)
   
  0.991
Slin_5103
NADH-quinone oxidoreductase subunit F (446 aa)
     
    0.991
Slin_5099
NADH-quinone oxidoreductase subunit beta; NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (181 aa)
   
    0.987
Slin_3629
NADH-quinone oxidoreductase subunit beta; NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (176 aa)
   
    0.987
Slin_5102
NADH-quinone oxidoreductase subunit E (166 aa)
     
  0.982
Slin_5104
NADH-ubiquinone oxidoreductase subunit G iron- sulfur binding protein (361 aa)
   
    0.982
Slin_5148
Acyl carrier protein; Carrier of the growing fatty acid chain in fatty acid biosynthesis (79 aa)
     
  0.982
Slin_4413
Phosphopantetheine-binding protein; Carrier of the growing fatty acid chain in fatty acid biosynthesis (77 aa)
     
  0.982
Slin_5351
NADH dehydrogenase (quinone); NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (406 aa)
     
    0.981
Your Current Organism:
Spirosoma linguale
NCBI taxonomy Id: 504472
Other names: S. linguale, S. linguale DSM 74, Spirosoma, Spirosoma linguale, Spirosoma linguale DSM 74, Spirosoma linguale str. DSM 74, Spirosoma linguale strain DSM 74
Server load: low (8%) [HD]