STRINGSTRING
Slin_6005 protein (Spirosoma linguale) - STRING interaction network
"Slin_6005" - Phosphoribosylformylglycinamidine cyclo-ligase in Spirosoma linguale
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
Slin_6005Phosphoribosylformylglycinamidine cyclo-ligase (389 aa)    
Predicted Functional Partners:
purL
Phosphoribosylformylglycinamidine synthase II; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP-dependent manner. PurS interacts with PurQ and PurL and is thought to assist i [...] (754 aa)
   
  0.999
purQ
Phosphoribosylformylglycinamidine synthase I; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP-dependent manner. PurS interacts with PurQ and PurL and is thought to assist in [...] (228 aa)
   
  0.999
Slin_5971
Amidophosphoribosyltransferase (630 aa)
 
 
  0.998
purC
Phosphoribosylaminoimidazole-succinocarboxamide synthase (313 aa)
 
 
  0.997
purH
Phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase (517 aa)
 
 
  0.996
purK
Phosphoribosylaminoimidazole carboxylase ATPase subunit; Catalyzes the ATP-dependent conversion of 5- aminoimidazole ribonucleotide (AIR) and HCO(3)(-) to N5- carboxyaminoimidazole ribonucleotide (N5-CAIR) (363 aa)
   
  0.988
purD
Phosphoribosylamine/glycine ligase (428 aa)
 
 
  0.983
purE
Phosphoribosylaminoimidazole carboxylase catalytic subunit; Catalyzes the conversion of N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) to 4-carboxy-5-aminoimidazole ribonucleotide (CAIR) (160 aa)
 
 
  0.972
purN
Phosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate (193 aa)
 
   
  0.966
Slin_5955
Adenylosuccinate lyase (446 aa)
 
 
  0.960
Your Current Organism:
Spirosoma linguale
NCBI taxonomy Id: 504472
Other names: S. linguale, S. linguale DSM 74, Spirosoma, Spirosoma linguale, Spirosoma linguale DSM 74, Spirosoma linguale str. DSM 74, Spirosoma linguale strain DSM 74
Server load: low (9%) [HD]