STRINGSTRING
JT27_03365 protein (Alcaligenes faecalis) - STRING interaction network
"JT27_03365" - GTPase SAR1 in Alcaligenes faecalis
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
JT27_03365GTPase SAR1; Derived by automated computational analysis using gene prediction method- Protein Homology (482 aa)    
Predicted Functional Partners:
metG
Methionine--tRNA ligase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation; Belongs to the class-I aminoacyl-tRNA synthetase family. MetG type 1 subfamily (689 aa)
   
   
  0.626
trpS
Tryptophan--tRNA ligase; Catalyzes a two-step reaction, first charging a tryptophan molecule by linking its carboxyl group to the alpha-phosphate of ATP, followed by transfer of the aminoacyl-adenylate to its tRNA; Derived by automated computational analysis using gene prediction method- Protein Homology (440 aa)
 
          0.583
rplQ
50S ribosomal protein L17; Derived by automated computational analysis using gene prediction method- Protein Homology (128 aa)
       
 
  0.511
rplO
50S ribosomal protein L15; Binds to the 23S rRNA (146 aa)
     
 
  0.499
rplK
50S ribosomal protein L11; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors (144 aa)
     
 
  0.492
rplI
50S ribosomal protein L9; Binds to the 23S rRNA (151 aa)
     
 
  0.487
rplV
50S ribosomal protein L22; The globular domain of the protein is located near the polypeptide exit tunnel on the outside of the subunit, while an extended beta-hairpin is found that lines the wall of the exit tunnel in the center of the 70S ribosome (109 aa)
     
 
  0.486
rplM
50S ribosomal protein L13; This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly (142 aa)
   
      0.480
rpmF
Some L32 proteins have zinc finger motifs consisting of CXXC while others do not; Derived by automated computational analysis using gene prediction method- Protein Homology; Belongs to the bacterial ribosomal protein bL32 family (60 aa)
     
      0.473
rplS
50S ribosomal protein L19; This protein is located at the 30S-50S ribosomal subunit interface and may play a role in the structure and function of the aminoacyl-tRNA binding site (124 aa)
     
      0.467
Your Current Organism:
Alcaligenes faecalis
NCBI taxonomy Id: 511
Other names: A. faecalis, ATCC 8750, Alcaligenes faecalis, Alcaligenes sp. BP11, CIP 55.84, CIP 60.80, DSM 30030, IAM 12369, IFO 13111, JCM 20522, JCM 20663, NBRC 13111, NCAIM B.01104, NCIMB 8156, NCTC 11953
Server load: low (7%) [HD]