STRINGSTRING
JT27_08575 protein (Alcaligenes faecalis) - STRING interaction network
"JT27_08575" - Biotin carboxyl carrier protein of acetyl-CoA carboxylase in Alcaligenes faecalis
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
JT27_08575Biotin carboxyl carrier protein of acetyl-CoA carboxylase; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA (150 aa)    
Predicted Functional Partners:
JT27_08580
Acetyl-CoA carboxylase; An AccC homodimer forms the biotin carboxylase subunit of the acetyl CoA carboxylase, an enzyme that catalyzes the formation of malonyl-CoA, which in turn controls the rate of fatty acid metabolism; Derived by automated computational analysis using gene prediction method- Protein Homology (449 aa)
  0.999
accD
Acetyl-coenzyme A carboxylase carboxyl transferase subunit beta; Component of the acetyl coenzyme A carboxylase (ACC) complex. Biotin carboxylase (BC) catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the transcarboxylase to acetyl-CoA to form malonyl- CoA; Belongs to the AccD/PCCB family (292 aa)
 
  0.989
accA
Acetyl-coenzyme A carboxylase carboxyl transferase subunit alpha; Component of the acetyl coenzyme A carboxylase (ACC) complex. First, biotin carboxylase catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the carboxyltransferase to acetyl-CoA to form malonyl-CoA (321 aa)
 
  0.985
fabH
3-oxoacyl-[acyl-carrier-protein] synthase 3; Catalyzes the condensation reaction of fatty acid synthesis by the addition to an acyl acceptor of two carbons from malonyl-ACP. Catalyzes the first condensation reaction which initiates fatty acid synthesis and may therefore play a role in governing the total rate of fatty acid production. Possesses both acetoacetyl-ACP synthase and acetyl transacylase activities. Its substrate specificity determines the biosynthesis of branched- chain and/or straight-chain of fatty acids; Belongs to the FabH family (325 aa)
 
 
  0.971
JT27_16275
Malonyl CoA-acyl carrier protein transacylase; Derived by automated computational analysis using gene prediction method- Protein Homology (312 aa)
 
 
  0.966
JT27_09990
MdcH; Derived by automated computational analysis using gene prediction method- Protein Homology (309 aa)
 
 
  0.940
JT27_02630
3-oxoacyl-ACP synthase; Derived by automated computational analysis using gene prediction method- Protein Homology (636 aa)
   
 
  0.927
JT27_13470
Acetyltransferase component of pyruvate dehydrogenase complex; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2) (566 aa)
     
 
  0.916
JT27_19210
Acetyl-CoA hydrolase; Derived by automated computational analysis using gene prediction method- Protein Homology (507 aa)
       
  0.912
acsA
Acetyl-coenzyme A synthetase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. AcsA undergoes a two-step reaction. In the first half reaction, AcsA combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA; Belongs to the ATP-dependent AMP-binding enzyme family (661 aa)
       
  0.910
Your Current Organism:
Alcaligenes faecalis
NCBI taxonomy Id: 511
Other names: A. faecalis, ATCC 8750, Alcaligenes faecalis, Alcaligenes sp. BP11, CIP 55.84, CIP 60.80, DSM 30030, IAM 12369, IFO 13111, JCM 20522, JCM 20663, NBRC 13111, NCAIM B.01104, NCIMB 8156, NCTC 11953
Server load: low (8%) [HD]