STRINGSTRING
greA protein (Alcaligenes faecalis) - STRING interaction network
"greA" - Transcription elongation factor GreA in Alcaligenes faecalis
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
greATranscription elongation factor GreA; Necessary for efficient RNA polymerase transcription elongation past template-encoded arresting sites. The arresting sites in DNA have the property of trapping a certain fraction of elongating RNA polymerases that pass through, resulting in locked ternary complexes. Cleavage of the nascent transcript by cleavage factors such as GreA or GreB allows the resumption of elongation from the new 3’terminus. GreA releases sequences of 2 to 3 nucleotides (158 aa)    
Predicted Functional Partners:
rpoA
DNA-directed RNA polymerase subunit alpha; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates (327 aa)
 
 
 
  0.848
rpoZ
DNA-directed RNA polymerase subunit omega; Promotes RNA polymerase assembly. Latches the N- and C- terminal regions of the beta’ subunit thereby facilitating its interaction with the beta and alpha subunits (67 aa)
 
 
  0.840
rpoC
DNA-directed RNA polymerase subunit beta’; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates (1420 aa)
   
 
 
  0.752
nusG
Transcription termination/antitermination protein NusG; Participates in transcription elongation, termination and antitermination (177 aa)
   
   
  0.749
rpoB
DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates (1370 aa)
   
 
 
  0.739
polA
DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5’-3’ exonuclease activity (905 aa)
 
   
  0.652
rpoD
RNA polymerase sigma factor RpoD; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the primary sigma factor during exponential growth (740 aa)
 
   
  0.650
JT27_14955
Cell division protein FtsK; Derived by automated computational analysis using gene prediction method- Protein Homology (791 aa)
 
   
  0.639
rho
Transcription termination factor Rho; Facilitates transcription termination by a mechanism that involves Rho binding to the nascent RNA, activation of Rho’s RNA-dependent ATPase activity, and release of the mRNA from the DNA template (418 aa)
   
 
 
  0.629
dksA
RNA polymerase-binding transcription factor DksA; Transcription factor that acts by binding directly to the RNA polymerase (RNAP). Required for negative regulation of rRNA expression and positive regulation of several amino acid biosynthesis promoters (145 aa)
   
 
  0.616
Your Current Organism:
Alcaligenes faecalis
NCBI taxonomy Id: 511
Other names: A. faecalis, ATCC 8750, Alcaligenes faecalis, Alcaligenes sp. BP11, CIP 55.84, CIP 60.80, DSM 30030, IAM 12369, IFO 13111, JCM 20522, JCM 20663, NBRC 13111, NCAIM B.01104, NCIMB 8156, NCTC 11953
Server load: low (7%) [HD]