STRINGSTRING
JT27_15915 protein (Alcaligenes faecalis) - STRING interaction network
"JT27_15915" - Ketol-acid reductoisomerase in Alcaligenes faecalis
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
JT27_15915Ketol-acid reductoisomerase (NADP(+)); Involved in the biosynthesis of branched-chain amino acids (BCAA). Catalyzes an alkyl-migration followed by a ketol- acid reduction of (S)-2-acetolactate (S2AL) to yield (R)-2,3- dihydroxy-isovalerate. In the isomerase reaction, S2AL is rearranged via a Mg-dependent methyl migration to produce 3- hydroxy-3-methyl-2-ketobutyrate (HMKB). In the reductase reaction, this 2-ketoacid undergoes a metal-dependent reduction by NADPH to yield (R)-2,3-dihydroxy-isovalerate; Belongs to the ketol-acid reductoisomerase family (338 aa)    
Predicted Functional Partners:
JT27_19945
Dihydroxy-acid dehydratase; Catalyzes the dehydration of 2,3-dihydroxy-3-methylbutanoate to 3-methyl-2-oxobutanoate in valine and isoleucine biosynthesis; Derived by automated computational analysis using gene prediction method- Protein Homology; Belongs to the IlvD/Edd family (619 aa)
 
  0.993
JT27_06785
Dihydroxy-acid dehydratase; Catalyzes the dehydration of 2,3-dihydroxy-3-methylbutanoate to 3-methyl-2-oxobutanoate in valine and isoleucine biosynthesis; Derived by automated computational analysis using gene prediction method- Protein Homology; Belongs to the IlvD/Edd family (570 aa)
 
  0.992
JT27_15905
Catalyzes the formation of 2-acetolactate from pyruvate, leucine sensitive; Derived by automated computational analysis using gene prediction method- Protein Homology (573 aa)
 
 
  0.991
AFA_13495
Acetolactate synthase small subunit; Derived by automated computational analysis using gene prediction method- Protein Homology (163 aa)
 
  0.989
JT27_04660
Acetolactate synthase; Derived by automated computational analysis using gene prediction method- Protein Homology (589 aa)
 
 
  0.983
JT27_16825
Uncharacterized protein; Derived by automated computational analysis using gene prediction method- Protein Homology; Belongs to the TPP enzyme family (546 aa)
 
 
  0.952
leuB
3-isopropylmalate dehydrogenase; Catalyzes the oxidation of 3-carboxy-2-hydroxy-4- methylpentanoate (3-isopropylmalate) to 3-carboxy-4-methyl-2- oxopentanoate. The product decarboxylates to 4-methyl-2 oxopentanoate (358 aa)
 
   
  0.845
JT27_17220
Chorismate mutase; Derived by automated computational analysis using gene prediction method- Protein Homology (363 aa)
 
 
  0.803
JT27_05170
Ketol-acid reductoisomerase (NADP(+)); Involved in the biosynthesis of branched-chain amino acids (BCAA). Catalyzes an alkyl-migration followed by a ketol- acid reduction of (S)-2-acetolactate (S2AL) to yield (R)-2,3- dihydroxy-isovalerate. In the isomerase reaction, S2AL is rearranged via a Mg-dependent methyl migration to produce 3- hydroxy-3-methyl-2-ketobutyrate (HMKB). In the reductase reaction, this 2-ketoacid undergoes a metal-dependent reduction by NADPH to yield (R)-2,3-dihydroxy-isovalerate; Belongs to the ketol-acid reductoisomerase family (338 aa)
   
   
 
0.803
JT27_08145
Methionine synthase; Derived by automated computational analysis using gene prediction method- Protein Homology (1257 aa)
   
 
  0.706
Your Current Organism:
Alcaligenes faecalis
NCBI taxonomy Id: 511
Other names: A. faecalis, ATCC 8750, Alcaligenes faecalis, Alcaligenes sp. BP11, CIP 55.84, CIP 60.80, DSM 30030, IAM 12369, IFO 13111, JCM 20522, JCM 20663, NBRC 13111, NCAIM B.01104, NCIMB 8156, NCTC 11953
Server load: low (10%) [HD]