STRINGSTRING
AFA_12530 protein (Alcaligenes faecalis) - STRING interaction network
"AFA_12530" - Nitrogen regulatory protein P-II 1 in Alcaligenes faecalis
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
AFA_12530Nitrogen regulatory protein P-II 1; Indirectly regulates nitrogen metabolism; at high nitrogen levels P-II prevents the phosphorylation of NR-I, the transcriptional activator of the glutamine synthetase gene (glnA); at low nitrogen levels P-II is uridylylated to form PII-UMP and interacts with an adenylyltransferase (GlnE) that activates GlnA; Derived by automated computational analysis using gene prediction method- Protein Homology (112 aa)    
Predicted Functional Partners:
JT27_16905
Ammonium transporter; Derived by automated computational analysis using gene prediction method- Protein Homology (413 aa)
 
  0.997
JT27_04355
Glutamate synthase; Derived by automated computational analysis using gene prediction method- Protein Homology (1577 aa)
 
   
  0.783
glnD
Bifunctional uridylyltransferase/uridylyl-removing enzyme; Modifies, by uridylylation and deuridylylation, the PII regulatory proteins (GlnB and homologs), in response to the nitrogen status of the cell that GlnD senses through the glutamine level. Under low glutamine levels, catalyzes the conversion of the PII proteins and UTP to PII-UMP and PPi, while under higher glutamine levels, GlnD hydrolyzes PII-UMP to PII and UMP (deuridylylation). Thus, controls uridylylation state and activity of the PII proteins, and plays an important role in the regulation of nitrogen metabolism (859 aa)
 
 
  0.755
glnE
Bifunctional glutamine synthetase adenylyltransferase/adenylyl-removing enzyme; Involved in the regulation of glutamine synthetase GlnA, a key enzyme in the process to assimilate ammonia. When cellular nitrogen levels are high, the C-terminal adenylyl transferase (AT) inactivates GlnA by covalent transfer of an adenylyl group from ATP to specific tyrosine residue of GlnA, thus reducing its activity. Conversely, when nitrogen levels are low, the N-terminal adenylyl removase (AR) activates GlnA by removing the adenylyl group by phosphorolysis, increasing its activity. The regulatory regi [...] (918 aa)
 
 
  0.584
JT27_08145
Methionine synthase; Derived by automated computational analysis using gene prediction method- Protein Homology (1257 aa)
         
  0.575
JT27_13325
Phosphoenolpyruvate synthase; Catalyzes the phosphorylation of pyruvate to phosphoenolpyruvate; Belongs to the PEP-utilizing enzyme family (788 aa)
           
  0.568
argA
Amino-acid acetyltransferase; Derived by automated computational analysis using gene prediction method- Protein Homology; Belongs to the acetyltransferase family. ArgA subfamily (451 aa)
   
 
  0.541
argB
Acetylglutamate kinase; Catalyzes the ATP-dependent phosphorylation of N-acetyl- L-glutamate; Belongs to the acetylglutamate kinase family. ArgB subfamily (298 aa)
     
 
  0.518
glnA
Forms a homododecamer; forms glutamine from ammonia and glutamate with the conversion of ATP to ADP and phosphate; also functions in the assimilation of ammonia; highly regulated protein controlled by the addition/removal of adenylyl groups by adenylyltransferase from specific tyrosine residues; addition of adenylyl groups results in inactivation of the enzyme; Derived by automated computational analysis using gene prediction method- Protein Homology (470 aa)
 
 
  0.467
JT27_11720
Uncharacterized protein; Derived by automated computational analysis using gene prediction method- Protein Homology (593 aa)
     
 
  0.465
Your Current Organism:
Alcaligenes faecalis
NCBI taxonomy Id: 511
Other names: A. faecalis, ATCC 8750, Alcaligenes faecalis, Alcaligenes sp. BP11, CIP 55.84, CIP 60.80, DSM 30030, IAM 12369, IFO 13111, JCM 20522, JCM 20663, NBRC 13111, NCAIM B.01104, NCIMB 8156, NCTC 11953
Server load: low (7%) [HD]