STRINGSTRING
JT27_17180 protein (Alcaligenes faecalis) - STRING interaction network
"JT27_17180" - Ferredoxin in Alcaligenes faecalis
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
JT27_17180Ferredoxin; Ferredoxins are iron-sulfur proteins that transfer electrons in a wide variety of metabolic reactions (110 aa)    
Predicted Functional Partners:
JT27_13325
Phosphoenolpyruvate synthase; Catalyzes the phosphorylation of pyruvate to phosphoenolpyruvate; Belongs to the PEP-utilizing enzyme family (788 aa)
         
  0.716
JT27_10645
Fumarate hydratase class I; Catalyzes the reversible hydration of fumarate to (S)- malate; Belongs to the class-I fumarase family (506 aa)
         
  0.710
JT27_09530
Succinate dehydrogenase flavoprotein subunit; Part of four member fumarate reductase enzyme complex FrdABCD which catalyzes the reduction of fumarate to succinate during anaerobic respiration; FrdAB are the catalytic subcomplex consisting of a flavoprotein subunit and an iron-sulfur subunit, respectively; FrdCD are the membrane components which interact with quinone and are involved in electron transfer; the catalytic subunits are similar to succinate dehydrogenase SdhAB; Derived by automated computational analysis using gene prediction method- Protein Homology; Belongs to the FAD-depe [...] (592 aa)
   
 
  0.621
metG
Methionine--tRNA ligase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation; Belongs to the class-I aminoacyl-tRNA synthetase family. MetG type 1 subfamily (689 aa)
           
  0.555
JT27_17175
Choloylglycine hydrolase; Derived by automated computational analysis using gene prediction method- Protein Homology (357 aa)
              0.541
JT27_04355
Glutamate synthase; Derived by automated computational analysis using gene prediction method- Protein Homology (1577 aa)
   
      0.454
sucD
Succinate--CoA ligase [ADP-forming] subunit alpha; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The alpha subunit of the enzyme binds the substrates coenzyme A and phosphate, while succinate binding and nucleotide specificity is provided by the beta subunit (293 aa)
   
   
  0.408
JT27_11180
Uncharacterized protein; Derived by automated computational analysis using gene prediction method- Protein Homology (388 aa)
   
   
  0.408
Your Current Organism:
Alcaligenes faecalis
NCBI taxonomy Id: 511
Other names: A. faecalis, ATCC 8750, Alcaligenes faecalis, Alcaligenes sp. BP11, CIP 55.84, CIP 60.80, DSM 30030, IAM 12369, IFO 13111, JCM 20522, JCM 20663, NBRC 13111, NCAIM B.01104, NCIMB 8156, NCTC 11953
Server load: low (9%) [HD]