node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
dmlA | ilvC | b1800 | b3774 | Tartrate dehydrogenase/decarboxylase / d-malate dehydrogenase; Catalyzes the NAD(+)-dependent oxidative decarboxylation of D-malate into pyruvate. Is essential for aerobic growth on D-malate as the sole carbon source. But is not required for anaerobic D-malate utilization, although DmlA is expressed and active in those conditions. Appears to be not able to use L-tartrate as a substrate for dehydrogenation instead of D-malate | Ketol-acid reductoisomerase, nad(p)-binding; Involved in the biosynthesis of branched-chain amino acids (BCAA). Catalyzes an alkyl-migration followed by a ketol-acid reduction of (S)-2-acetolactate (S2AL) to yield (R)-2,3-dihydroxy-isovalerate. In the isomerase reaction, S2AL is rearranged via a Mg-dependent methyl migration to produce 3-hydroxy-3-methyl-2-ketobutyrate (HMKB). In the reductase reaction, this 2-ketoacid undergoes a metal-dependent reduction by NADPH to yield (R)-2,3-dihydroxy-isovalerate. Also able to use 2-ketopantoate, 2-ketoisovalerate, 2-ketovalerate, 2-ketobutyrate [...] | 0.431 |
dmlA | ilvD | b1800 | b3771 | Tartrate dehydrogenase/decarboxylase / d-malate dehydrogenase; Catalyzes the NAD(+)-dependent oxidative decarboxylation of D-malate into pyruvate. Is essential for aerobic growth on D-malate as the sole carbon source. But is not required for anaerobic D-malate utilization, although DmlA is expressed and active in those conditions. Appears to be not able to use L-tartrate as a substrate for dehydrogenation instead of D-malate | Dihydroxy-acid dehydratase; Enzyme; Amino acid biosynthesis: Isoleucine, Valine | 0.492 |
dmlA | ilvH | b1800 | b0078 | Tartrate dehydrogenase/decarboxylase / d-malate dehydrogenase; Catalyzes the NAD(+)-dependent oxidative decarboxylation of D-malate into pyruvate. Is essential for aerobic growth on D-malate as the sole carbon source. But is not required for anaerobic D-malate utilization, although DmlA is expressed and active in those conditions. Appears to be not able to use L-tartrate as a substrate for dehydrogenation instead of D-malate | Acetolactate synthase/acetohydroxybutanoate synthase, regulatory subunit; Belongs to the acetolactate synthase small subunit family | 0.947 |
dmlA | ilvI | b1800 | b0077 | Tartrate dehydrogenase/decarboxylase / d-malate dehydrogenase; Catalyzes the NAD(+)-dependent oxidative decarboxylation of D-malate into pyruvate. Is essential for aerobic growth on D-malate as the sole carbon source. But is not required for anaerobic D-malate utilization, although DmlA is expressed and active in those conditions. Appears to be not able to use L-tartrate as a substrate for dehydrogenation instead of D-malate | Acetolactate synthase/acetohydroxybutanoate synthase, catalytic subunit; Acetolactate synthase III, valine sensitive, large subunit | 0.950 |
dmlA | ilvM | b1800 | b3769 | Tartrate dehydrogenase/decarboxylase / d-malate dehydrogenase; Catalyzes the NAD(+)-dependent oxidative decarboxylation of D-malate into pyruvate. Is essential for aerobic growth on D-malate as the sole carbon source. But is not required for anaerobic D-malate utilization, although DmlA is expressed and active in those conditions. Appears to be not able to use L-tartrate as a substrate for dehydrogenation instead of D-malate | Pseudogene, acetolactate synthase 2 large subunit, valine-insensitive; acetolactate synthase II, large subunit, cryptic, interrupted | 0.907 |
dmlA | ilvN | b1800 | b3670 | Tartrate dehydrogenase/decarboxylase / d-malate dehydrogenase; Catalyzes the NAD(+)-dependent oxidative decarboxylation of D-malate into pyruvate. Is essential for aerobic growth on D-malate as the sole carbon source. But is not required for anaerobic D-malate utilization, although DmlA is expressed and active in those conditions. Appears to be not able to use L-tartrate as a substrate for dehydrogenation instead of D-malate | Belongs to the acetolactate synthase small subunit family | 0.923 |
dmlA | leuA | b1800 | b0074 | Tartrate dehydrogenase/decarboxylase / d-malate dehydrogenase; Catalyzes the NAD(+)-dependent oxidative decarboxylation of D-malate into pyruvate. Is essential for aerobic growth on D-malate as the sole carbon source. But is not required for anaerobic D-malate utilization, although DmlA is expressed and active in those conditions. Appears to be not able to use L-tartrate as a substrate for dehydrogenation instead of D-malate | 2-isopropylmalate synthase; Catalyzes the condensation of the acetyl group of acetyl-CoA with 3-methyl-2-oxobutanoate (2-oxoisovalerate) to form 3-carboxy-3- hydroxy-4-methylpentanoate (2-isopropylmalate) | 0.726 |
dmlA | pfo | b1800 | b1378 | Tartrate dehydrogenase/decarboxylase / d-malate dehydrogenase; Catalyzes the NAD(+)-dependent oxidative decarboxylation of D-malate into pyruvate. Is essential for aerobic growth on D-malate as the sole carbon source. But is not required for anaerobic D-malate utilization, although DmlA is expressed and active in those conditions. Appears to be not able to use L-tartrate as a substrate for dehydrogenation instead of D-malate | Pyruvate-ferredoxin/flavodoxin oxidoreductase; Oxidoreductase required for the transfer of electrons from pyruvate to flavodoxin | 0.913 |
ilvA | ilvC | b3772 | b3774 | L-threonine dehydratase, biosynthetic; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA | Ketol-acid reductoisomerase, nad(p)-binding; Involved in the biosynthesis of branched-chain amino acids (BCAA). Catalyzes an alkyl-migration followed by a ketol-acid reduction of (S)-2-acetolactate (S2AL) to yield (R)-2,3-dihydroxy-isovalerate. In the isomerase reaction, S2AL is rearranged via a Mg-dependent methyl migration to produce 3-hydroxy-3-methyl-2-ketobutyrate (HMKB). In the reductase reaction, this 2-ketoacid undergoes a metal-dependent reduction by NADPH to yield (R)-2,3-dihydroxy-isovalerate. Also able to use 2-ketopantoate, 2-ketoisovalerate, 2-ketovalerate, 2-ketobutyrate [...] | 0.945 |
ilvA | ilvD | b3772 | b3771 | L-threonine dehydratase, biosynthetic; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA | Dihydroxy-acid dehydratase; Enzyme; Amino acid biosynthesis: Isoleucine, Valine | 0.997 |
ilvA | ilvH | b3772 | b0078 | L-threonine dehydratase, biosynthetic; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA | Acetolactate synthase/acetohydroxybutanoate synthase, regulatory subunit; Belongs to the acetolactate synthase small subunit family | 0.948 |
ilvA | ilvI | b3772 | b0077 | L-threonine dehydratase, biosynthetic; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA | Acetolactate synthase/acetohydroxybutanoate synthase, catalytic subunit; Acetolactate synthase III, valine sensitive, large subunit | 0.950 |
ilvA | ilvM | b3772 | b3769 | L-threonine dehydratase, biosynthetic; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA | Pseudogene, acetolactate synthase 2 large subunit, valine-insensitive; acetolactate synthase II, large subunit, cryptic, interrupted | 0.946 |
ilvA | ilvN | b3772 | b3670 | L-threonine dehydratase, biosynthetic; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA | Belongs to the acetolactate synthase small subunit family | 0.878 |
ilvA | leuA | b3772 | b0074 | L-threonine dehydratase, biosynthetic; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA | 2-isopropylmalate synthase; Catalyzes the condensation of the acetyl group of acetyl-CoA with 3-methyl-2-oxobutanoate (2-oxoisovalerate) to form 3-carboxy-3- hydroxy-4-methylpentanoate (2-isopropylmalate) | 0.923 |
ilvA | leuB | b3772 | b0073 | L-threonine dehydratase, biosynthetic; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA | 3-isopropylmalate dehydrogenase, NAD(+)-dependent; Catalyzes the oxidation of 3-carboxy-2-hydroxy-4- methylpentanoate (3-isopropylmalate) to 3-carboxy-4-methyl-2- oxopentanoate. The product decarboxylates to 4-methyl-2 oxopentanoate | 0.985 |
ilvA | pfo | b3772 | b1378 | L-threonine dehydratase, biosynthetic; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA | Pyruvate-ferredoxin/flavodoxin oxidoreductase; Oxidoreductase required for the transfer of electrons from pyruvate to flavodoxin | 0.703 |
ilvC | dmlA | b3774 | b1800 | Ketol-acid reductoisomerase, nad(p)-binding; Involved in the biosynthesis of branched-chain amino acids (BCAA). Catalyzes an alkyl-migration followed by a ketol-acid reduction of (S)-2-acetolactate (S2AL) to yield (R)-2,3-dihydroxy-isovalerate. In the isomerase reaction, S2AL is rearranged via a Mg-dependent methyl migration to produce 3-hydroxy-3-methyl-2-ketobutyrate (HMKB). In the reductase reaction, this 2-ketoacid undergoes a metal-dependent reduction by NADPH to yield (R)-2,3-dihydroxy-isovalerate. Also able to use 2-ketopantoate, 2-ketoisovalerate, 2-ketovalerate, 2-ketobutyrate [...] | Tartrate dehydrogenase/decarboxylase / d-malate dehydrogenase; Catalyzes the NAD(+)-dependent oxidative decarboxylation of D-malate into pyruvate. Is essential for aerobic growth on D-malate as the sole carbon source. But is not required for anaerobic D-malate utilization, although DmlA is expressed and active in those conditions. Appears to be not able to use L-tartrate as a substrate for dehydrogenation instead of D-malate | 0.431 |
ilvC | ilvA | b3774 | b3772 | Ketol-acid reductoisomerase, nad(p)-binding; Involved in the biosynthesis of branched-chain amino acids (BCAA). Catalyzes an alkyl-migration followed by a ketol-acid reduction of (S)-2-acetolactate (S2AL) to yield (R)-2,3-dihydroxy-isovalerate. In the isomerase reaction, S2AL is rearranged via a Mg-dependent methyl migration to produce 3-hydroxy-3-methyl-2-ketobutyrate (HMKB). In the reductase reaction, this 2-ketoacid undergoes a metal-dependent reduction by NADPH to yield (R)-2,3-dihydroxy-isovalerate. Also able to use 2-ketopantoate, 2-ketoisovalerate, 2-ketovalerate, 2-ketobutyrate [...] | L-threonine dehydratase, biosynthetic; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA | 0.945 |
ilvC | ilvD | b3774 | b3771 | Ketol-acid reductoisomerase, nad(p)-binding; Involved in the biosynthesis of branched-chain amino acids (BCAA). Catalyzes an alkyl-migration followed by a ketol-acid reduction of (S)-2-acetolactate (S2AL) to yield (R)-2,3-dihydroxy-isovalerate. In the isomerase reaction, S2AL is rearranged via a Mg-dependent methyl migration to produce 3-hydroxy-3-methyl-2-ketobutyrate (HMKB). In the reductase reaction, this 2-ketoacid undergoes a metal-dependent reduction by NADPH to yield (R)-2,3-dihydroxy-isovalerate. Also able to use 2-ketopantoate, 2-ketoisovalerate, 2-ketovalerate, 2-ketobutyrate [...] | Dihydroxy-acid dehydratase; Enzyme; Amino acid biosynthesis: Isoleucine, Valine | 0.999 |