STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ldcCLysine decarboxylase 2, constitutive; Plays a role in lysine utilization by acting as a lysine decarboxylase. (713 aa)    
Predicted Functional Partners:
patA
Putrescine:2-oxoglutaric acid aminotransferase, PLP-dependent; Catalyzes the aminotransferase reaction from putrescine to 2- oxoglutarate, leading to glutamate and 4-aminobutanal, which spontaneously cyclizes to form 1-pyrroline. This is the first step in one of two pathways for putrescine degradation, where putrescine is converted into 4- aminobutanoate (gamma-aminobutyrate or GABA) via 4-aminobutanal, which allows E.coli to grow on putrescine as the sole nitrogen source. Also functions as a cadaverine transaminase in a a L-lysine degradation pathway to succinate that proceeds via cad [...]
   
 
 0.982
cadA
Lysine decarboxylase, acid-inducible; Inducible lysine decarboxylase that catalyzes the proton- dependent decarboxylation of L-lysine to produce the polyamine cadaverine and carbon dioxide. Plays a role in pH homeostasis by consuming protons and neutralizing the acidic by- products of carbohydrate fermentation. Belongs to the Orn/Lys/Arg decarboxylase class-I family.
  
 
0.959
cadB
Putative lysine/cadaverine transporter; Probable cadaverine/lysine antiporter or part of it.
 
  
 0.897
yaeR
Putative lyase; To B.subtilis YwkD.
  
  
 0.871
lysA
Diaminopimelate decarboxylase, PLP-binding; Specifically catalyzes the decarboxylation of meso- diaminopimelate (meso-DAP) to L-lysine. Is not active against the DD- or LL-isomers of diaminopimelate; Belongs to the Orn/Lys/Arg decarboxylase class-II family. LysA subfamily.
    
 0.854
patD
Gamma-aminobutyraldehyde dehydrogenase; Catalyzes the oxidation 4-aminobutanal (gamma- aminobutyraldehyde) to 4-aminobutanoate (gamma-aminobutyrate or GABA). This is the second step in one of two pathways for putrescine degradation, where putrescine is converted into 4-aminobutanoate via 4-aminobutanal, which allows E.coli to grow on putrescine as the sole nitrogen source. Also functions as a 5-aminopentanal dehydrogenase in a a L-lysine degradation pathway to succinate that proceeds via cadaverine, glutarate and L-2-hydroxyglutarate. Can also oxidize n-alkyl medium-chain aldehydes, bu [...]
   
  
 0.822
speE
Spermidine synthase (putrescine aminopropyltransferase); Involved in the biosynthesis of polyamines which play a significant role in the structural and functional organization in the chromoid of E.coli by compacting DNA and neutralizing negative charges. Catalyzes the irreversible transfer (ping-pong mechanism) of a propylamine group from the amino donor S-adenosylmethioninamine (decarboxy-AdoMet) to putrescine (1,4-diaminobutane) to yield spermidine. Cadaverine (1,5-diaminopentane) and spermidine can also be used as the propylamine acceptor.
 
 
 0.776
ravA
Hexameric AAA+ MoxR family ATPase, putative molecular chaperone; Functions as an ATPase. May play a role in metal insertion (metal-chelatase) or as a chaperone.
   
 
 0.721
gabT
4-aminobutyrate aminotransferase, PLP-dependent; Pyridoxal phosphate-dependent enzyme that catalyzes transamination between primary amines and alpha-keto acids. Catalyzes the transfer of the amino group from gamma-aminobutyrate (GABA) to alpha-ketoglutarate (KG) to yield succinic semialdehyde (SSA) and glutamate. Thereby functions in a GABA degradation pathway that allows some E.coli strains to utilize GABA as a nitrogen source for growth. Also catalyzes the conversion of 5-aminovalerate to glutarate semialdehyde, as part of a L-lysine degradation pathway that proceeds via cadaverine, [...]
  
  
 0.647
gabD
Succinate-semialdehyde dehydrogenase I, NADP-dependent; Catalyzes the NADP(+)-dependent oxidation of succinate semialdehyde to succinate. Thereby functions in a GABA degradation pathway that allows some E.coli strains to utilize GABA as a nitrogen source for growth. Also catalyzes the conversion of glutarate semialdehyde to glutarate, as part of a L- lysine degradation pathway that proceeds via cadaverine, glutarate and L-2-hydroxyglutarate.
   
  
 0.636
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (26%) [HD]