STRING protein interaction network
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
protein homology
Your Input:
Gene Fusion
dkgBCatalyzes the reduction of 2,5-diketo-D-gluconic acid (25DKG) to 2-keto-L-gulonic acid (2KLG) (267 aa)    
Predicted Functional Partners:
Catalyzes the NADPH-dependent reduction of glyoxylate and hydroxypyruvate into glycolate and glycerate, respectively. Can also reduce 2,5-diketo-D-gluconate (25DKG) to 5-keto-D-gluconate (5KDG), 2- keto-D-gluconate (2KDG) to D-gluconate, and 2-keto-L-gulonate (2KLG) to L-idonate (IA), but it is not its physiological function. Inactive towards 2-oxoglutarate, oxaloacetate, pyruvate, 5-keto-D-gluconate, D- fructose and L-sorbose. Activity with NAD is very low
Catalyzes the NAD-dependent oxidation of glycerol to dihydroxyacetone (glycerone). Allows microorganisms to utilize glycerol as a source of carbon under anaerobic conditions. In E.coli, an important role of GldA is also likely to regulate the intracellular level of dihydroxyacetone by catalyzing the reverse reaction, i.e. the conversion of dihydroxyacetone into glycerol. Possesses a broad substrate specificity, since it is also able to oxidize 1,2-propanediol and to reduce glycolaldehyde, methylglyoxal and hydroxyacetone into ethylene glycol, lactaldehyde and 1,2-propanediol, respectively.
Uncharacterized protein YagA; Pseudogene, CP4-6 prophage;Phage or Prophage Related
Catalyzes the stereospecific, NADPH-dependent reduction of L- glyceraldehyde 3-phosphate (L-GAP). The physiological role of gpr is the detoxification of L-GAP, which may be formed by non-enzymatic racemization of GAP. Also involved in the stress response as a methylglyoxal reductase which converts the toxic metabolite methylglyoxal to acetol in vitro and in vivo.
Displays esterase activity toward pNP-butyrate.
May be involved in a fimbrial system chaperoned by YqiH and exported by YqiG
Converts the D-glycero-beta-D-manno-heptose 1,7-bisphosphate (beta-HBP) intermediate into D-glycero-beta-D-manno-heptose 1-phosphate by removing the phosphate group at the C-7 position.
annotation not available
Not known; probable catabolic enzyme
Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE. Acts before DnaK, in the processing of protein aggregates. Protein binding stimulates the ATPase activity; ATP hydrolysis unfolds the denatured protein aggregates, which probably helps expose new hydrophobic binding sites on the surface of ClpB-bound aggregates, contributing to the solubilization and refolding of denatured protein aggregates by DnaK.
Your Current Organism:
Escherichia coli K12 MG1655
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli K12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (1%) [HD]