STRING protein interaction network
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
protein homology
Your Input:
Gene Fusion
mhpAPutative 3-(3-hydroxyphenyl)propanoate/3-hydroxycinnamate hydroxylase; Catalyzes the insertion of one atom of molecular oxygen into position 2 of the phenyl ring of 3-(3-hydroxyphenyl)propionate (3-HPP) and hydroxycinnamic acid (3HCI) (554 aa)    
Predicted Functional Partners:
2,3-dihydroxyphenylpropionate 1,2-dioxygenase; Catalyzes the non-heme iron(II)-dependent oxidative cleavage of 2,3-dihydroxyphenylpropionic acid and 2,3-dihydroxicinnamic acid into 2-hydroxy-6-ketononadienedioate and 2-hydroxy-6- ketononatrienedioate, respectively
2-hydroxy-6-ketonona-2,4-dienedioic acid hydrolase; Catalyzes the cleavage of the C5-C6 bond of 2-hydroxy-6- oxononadienedioate and 2-hydroxy-6-oxononatrienedioate, a dienol ring fission product of the bacterial meta-cleavage pathway for degradation of phenylpropionic acid. MhpC shows some selectivity for the carboxylate of the side chain
2-hydroxypentadienoate hydratase; Catalyzes the conversion of 2-hydroxypentadienoic acid (enolic form of 2-oxopent-4-enoate) to 4-hydroxy-2-ketopentanoic acid
Acetaldehyde-coa dehydrogenase ii, nad-binding; Catalyzes the conversion of acetaldehyde to acetyl-CoA, using NAD(+) and coenzyme A. Is the final enzyme in the meta-cleavage pathway for the degradation of 3-phenylpropanoate. Functions as a chaperone protein for folding of MhpE
4-hyroxy-2-oxovalerate/4-hydroxy-2-oxopentanoic acid aldolase, class I; Catalyzes the retro-aldol cleavage of 4-hydroxy-2- oxopentanoate to pyruvate and acetaldehyde. Is involved in the meta- cleavage pathway for the degradation of 3-phenylpropanoate
Iclr family transcriptional regulator, mhp operon transcriptional activator; Activator of the mhpABCDFE operon coding for components of the 3-hydroxyphenylpropionate degradation pathway
2,3-dihydroxy-2,3-dihydrophenylpropionate dehydrogenase; Converts 3-phenylpropionate-dihydrodiol (PP-dihydrodiol) and cinnamic acid-dihydrodiol (CI-dihydrodiol) into 3-(2,3- dihydroxylphenyl)propanoic acid (DHPP) and 2,3-dihydroxicinnamic acid (DHCI), respectively
Mfs transporter, aahs family, 3-hydroxyphenylpropionic acid transporter; Uptake of 3-(3-hydroxyphenyl)propionate (3HPP) across the cytoplasmic membrane. Transport is driven by the proton motive force. Does not transport benzoate, 3-hydroxybenzoate or gentisate
Tetr/acrr family transcriptional regulator, repressor for divergent bdca; Negatively regulates expression of bdcA
Galactofuranose abc transporter putative atp binding subunit; Part of the ABC transporter complex YtfQRT-YjfF involved in galactofuranose transport (Probable). Responsible for energy coupling to the transport system (Probable)
Your Current Organism:
Escherichia coli K12 MG1655
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli K12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (12%) [HD]