close STRING Database User Survey
Please help us improve further — take a moment to fill our brief user survey.
 
STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
aroLShikimate kinase ii; Catalyzes the specific phosphorylation of the 3-hydroxyl group of shikimic acid using ATP as a cosubstrate (174 aa)    
Predicted Functional Partners:
aroE
Dehydroshikimate reductase, nad(p)-binding; Involved in the biosynthesis of the chorismate, which leads to the biosynthesis of aromatic amino acids. Catalyzes the reversible NADPH linked reduction of 3-dehydroshikimate (DHSA) to yield shikimate (SA). It displays no activity in the presence of NAD
 0.999
aroA
3-phosphoshikimate 1-carboxyvinyltransferase; Catalyzes the transfer of the enolpyruvyl moiety of phosphoenolpyruvate (PEP) to the 5-hydroxyl of shikimate-3-phosphate (S3P) to produce enolpyruvyl shikimate-3-phosphate and inorganic phosphate
 0.997
ydiB
Quinate/shikimate 5-dehydrogenase, nad(p)-binding; The actual biological function of YdiB remains unclear, nor is it known whether 3-dehydroshikimate or quinate represents the natural substrate. Catalyzes the reversible NAD-dependent reduction of both 3-dehydroshikimate (DHSA) and 3-dehydroquinate to yield shikimate (SA) and quinate, respectively. It can use both NAD or NADP for catalysis, however it has higher catalytic efficiency with NAD
 0.997
aroB
3-dehydroquinate synthase; Catalyzes the conversion of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) to dehydroquinate (DHQ)
  
 0.995
tyrA
T-protein; Chorismate mutase-T and prephenate dehydrogenase; Protein involved in L-phenylalanine biosynthetic process and tyrosine biosynthetic process
  
 
 0.970
pheA
Fused chorismate mutase/prephenate dehydratase; Catalyzes the Claisen rearrangement of chorismate to prephenate and the decarboxylation/dehydration of prephenate to phenylpyruvate
 
 0.968
aroD
3-dehydroquinate dehydratase I; Involved in the third step of the chorismate pathway, which leads to the biosynthesis of aromatic amino acids (AroAA). Catalyzes the cis-dehydration of 3-dehydroquinate (DHQ) and introduces the first double bond of the aromatic ring to yield 3-dehydroshikimate. The reaction involves the formation of an imine intermediate between the keto group of 3-dehydroquinate and the epsylon-amino group of a lys-170 at the active site
    
 0.942
aroF
3-deoxy-D-arabino-heptulosonate-7-phosphate synthase, tyrosine-repressible; Stereospecific condensation of phosphoenolpyruvate (PEP) and D-erythrose-4-phosphate (E4P) giving rise to 3-deoxy-D-arabino- heptulosonate-7-phosphate (DAHP)
  
  
 0.917
aroC
Chorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system. It uses NADPH to reduce FMN
 
  
 0.916
tktA
Transketolase 1, thiamine triphosphate-binding; Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate. Thus, catalyzes the reversible transfer of a two-carbon ketol group from sedoheptulose-7-phosphate to glyceraldehyde-3-phosphate, producing xylulose-5-phosphate and ribose- 5-phosphate
 
  
 0.908
Your Current Organism:
Escherichia coli K12 MG1655
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli K12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (20%) [HD]