STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
allAUreidoglycolate lyase, releasing urea; Catalyzes the catabolism of the allantoin degradation intermediate (S)-ureidoglycolate, generating urea and glyoxylate. Involved in the anaerobic utilization of allantoin as sole nitrogen source. Reinforces the induction of genes involved in the degradation of allantoin and glyoxylate by producing glyoxylate. (160 aa)    
Predicted Functional Partners:
allD
Ureidoglycolate dehydrogenase; AllD plays a pivotal role as a metabolic branch-point enzyme in nitrogen utilization via the assimilation of allantoin. It is able to utilize allantoin as a sole source of nitrogen under anaerobic conditions. Catalyzes the oxidation of ureidoglycolate to oxalurate.
   
 
 0.989
gcl
Glyoxylate carboligase; Catalyzes the condensation of two molecules of glyoxylate to give 2-hydroxy-3-oxopropanoate (also termed tartronate semialdehyde).
 
 
 0.980
allE
S-ureidoglycine aminohydrolase; Involved in the anaerobic nitrogen utilization via the assimilation of allantoin. Catalyzes the second stereospecific hydrolysis reaction (deamination) of the allantoin degradation pathway, producing S-ureidoglycolate and ammonia from S-ureidoglycine. Belongs to the UGHY family.
 
  
  0.929
allB
Allantoinase; Catalyzes the conversion of allantoin (5-ureidohydantoin) to allantoic acid by hydrolytic cleavage of the five-member hydantoin ring; Belongs to the metallo-dependent hydrolases superfamily. Allantoinase family.
 
  
 0.913
allR
Glyoxylate-inducible transcriptional repressor of all and gcl operons; Negative regulator of allantoin and glyoxylate utilization operons. Binds to the gcl promoter and to the allS-allA intergenic region. Binding to DNA is abolished by glyoxylate.
     
 0.900
glcB
Malate synthase G; Involved in the glycolate utilization. Catalyzes the condensation and subsequent hydrolysis of acetyl-coenzyme A (acetyl- CoA) and glyoxylate to form malate and CoA.
 
  
 0.896
aceB
Malate synthase A; Protein involved in glyoxylate cycle.
    
 0.862
aceA
Isocitrate lyase; Involved in the metabolic adaptation in response to environmental changes. Catalyzes the reversible formation of succinate and glyoxylate from isocitrate, a key step of the glyoxylate cycle, which operates as an anaplerotic route for replenishing the tricarboxylic acid cycle during growth on fatty acid substrates.
     
 0.829
allC
Allantoate amidohydrolase; Involved in the anaerobic nitrogen utilization via the assimilation of allantoin. Catalyzes specifically the hydrolysis of allantoate to yield CO2, NH3 and S- ureidoglycine, which is unstable and readily undergoes a second deamination by S-ureidoglycine aminohydrolase AllE to yield S- ureidoglycolate and NH3. In vivo, the spontaneous release of S-ureidoglycolate and ammonia from S-ureidoglycine appears to be too slow to sustain an efficient flux of nitrogen.
  
  
 0.814
ghrA
Glyoxylate/hydroxypyruvate reductase A; Catalyzes the NADPH-dependent reduction of glyoxylate and hydroxypyruvate into glycolate and glycerate, respectively. Inactive towards 2-oxo-D-gluconate, 2-oxoglutarate, oxaloacetate and pyruvate. Only D- and L-glycerate are involved in the oxidative activity with NADP. Activity with NAD is very low.
     
  0.800
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (34%) [HD]