STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
fepBBinds ferrienterobactin; part of the binding-protein- dependent transport system for uptake of ferrienterobactin (318 aa)    
Predicted Functional Partners:
fepC
Part of the binding-protein-dependent transport system for ferric enterobactin. Probably responsible for energy coupling to the transport system
 
 0.996
fepD
Part of the binding-protein-dependent transport system for ferric enterobactin. Probably responsible for the translocation of the substrate across the membrane
 
 
 0.996
fepG
Part of the binding-protein-dependent transport system for ferric enterobactin. Probably responsible for the translocation of the substrate across the membrane
 
 
 0.995
fes
Upon internalization, ferric enterobactin is processed via an exquisitely specific pathway that is dependent on FES activity, making iron available for metabolic use
 
  
 0.987
entC
Involved in the biosynthesis of the siderophore enterobactin (macrocyclic trimeric lactone of N-(2,3-dihydroxybenzoyl)-serine). Catalyzes the reversible conversion of chorismate to isochorismate. ECO:0000269|PubMed:2139795, ECO:0000269|PubMed:2536681,
 
 
 0.987
fepA
This protein is involved in the initial step of iron uptake by binding ferrienterobactin (Fe-ENT), an iron chelatin siderophore that allows E.coli to extract iron from the environment. FepA also acts as a receptor for colicins B and D
  
  
 0.983
entF
Activates the carboxylate group of L-serine via ATP-dependent PPi exchange reactions to the aminoacyladenylate, preparing that molecule for the final stages of enterobactin synthesis. Holo-EntF acts as the catalyst for the formation of the three amide and three ester bonds present in the cyclic (2,3-dihydroxybenzoyl)serine trimer enterobactin, using seryladenylate and acyl-holo-EntB (acylated with 2,3-dihydroxybenzoate by EntE)
 
  
 0.977
entS
Component of an export pathway for enterobactin . Overexpression reduces intracellular arabinose concentrations
  
  
 0.977
entB
Involved in the biosynthesis of the siderophore enterobactin (enterochelin), which is a macrocyclic trimeric lactone of N-(2,3- dihydroxybenzoyl)-serine. The serine trilactone serves as a scaffolding for the three catechol functionalities that provide hexadentate coordination for the tightly ligated iron(2+) atoms. EntB is a bifunctional protein that serves as an isochorismate lyase and an aryl carrier protein (ArCP). Catalyzes the conversion of isochorismate to 2,3-dihydro-2,3-dihydroxybenzoate (2,3-diDHB), the precursor of 2,3- dihydroxybenzoate (DHB). In the enterobactin assembly, E [...]
 
  
 0.975
entE
Involved in the biosynthesis of the siderophore enterobactin (enterochelin), which is a macrocyclic trimeric lactone of N-(2,3- dihydroxybenzoyl)-serine. The serine trilactone serves as a scaffolding for the three catechol functionalities that provide hexadentate coordination for the tightly ligated iron(2+) atoms. EntE proccesses via a two-step adenylation-ligation reaction (bi-uni-uni-bi ping-pong mechanism). First, it catalyzes the activation of the carboxylate group of 2,3-dihydroxy-benzoate (DHB), via a reversible ATP-dependent pyrophosphate exchange reactions to yield the acylade [...]
 
  
 0.973
Your Current Organism:
Escherichia coli K12 MG1655
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli K12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (4%) [HD]