STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
kdsBActivates KDO (a required 8-carbon sugar) for incorporation into bacterial lipopolysaccharide in Gram-negative bacteria. (248 aa)    
Predicted Functional Partners:
lpxK
Transfers the gamma-phosphate of ATP to the 4'-position of a tetraacyldisaccharide 1-phosphate intermediate (termed DS-1-P) to form tetraacyldisaccharide 1,4'-bis-phosphate (lipid IVA).
  
 0.997
kdsC
Catalyzes the hydrolysis of 3-deoxy-D-manno-octulosonate 8- phosphate (KDO 8-P) to 3-deoxy-D-manno-octulosonate (KDO) and inorganic phosphate
 0.997
waaA
Involved in lipopolysaccharide (LPS) biosynthesis. Catalyzes the transfer of two 3-deoxy-D-manno-octulosonate (Kdo) residues from CMP-Kdo to lipid IV(A), the tetraacyldisaccharide-1,4'-bisphosphate precursor of lipid A
 
 0.997
kdsA
Synthesis of KDO 8-P which is required for lipid A maturation and cellular growth
 
 
 0.992
lpxC
Catalyzes the hydrolysis of UDP-3-O-myristoyl-N- acetylglucosamine to form UDP-3-O-myristoylglucosamine and acetate, the committed step in lipid A biosynthesis. Rule:MF_00388, ECO:0000269|PubMed:10026271, ECO:0000269|PubMed:8530464,
 
 
 0.969
lpxA
Involved in the biosynthesis of lipid A, a phosphorylated glycolipid that anchors the lipopolysaccharide to the outer membrane of the cell
 
  
 0.963
kdsD
Involved in the biosynthesis of 3-deoxy-D-manno-octulosonate (KDO), a unique 8-carbon sugar component of lipopolysaccharides (LPSs). KdsD is not essential in the KDO biosynthesis and can be substituted by GutQ. Catalyzes the reversible aldol-ketol isomerization between D- ribulose 5-phosphate (Ru5P) and D-arabinose 5-phosphate (A5P).
 
  
 0.962
lpxB
Condensation of UDP-2,3-diacylglucosamine and 2,3- diacylglucosamine-1-phosphate to form lipid A disaccharide, a precursor of lipid A, a phosphorylated glycolipid that anchors the lipopolysaccharide to the outer membrane of the cell
 
  
 0.958
lpxD
Catalyzes the N-acylation of UDP-3-O- (hydroxytetradecanoyl)glucosamine using 3-hydroxytetradecanoyl-ACP as the acyl donor. Is involved in the biosynthesis of lipid A, a phosphorylated glycolipid that anchors the lipopolysaccharide to the outer membrane of the cell. Prefers (3R)-3-hydroxytetradecanoyl-ACP over (3R)-3-hydroxyhexadecanoyl-ACP as the acyl donor in vitro, which is consistent with the structure of E.coli lipid A that contains over 95% (R)-3-hydroxytetradecanoate at the 2 and 2' positions.
 
  
 0.947
srlQ
Catalyzes the reversible aldol-ketol isomerization between D- ribulose 5-phosphate (Ru5P) and D-arabinose 5-phosphate (A5P). It appears that the physiological function of G-API may be to synthesize the regulatory molecule A5P, which in turn participates in the induction of the gut operon through an unknown mechanism. It is also able of sustaining the biosynthetic pathway of 3-deoxy-D-manno- octulosonate (KDO), a unique 8-carbon sugar component of lipopolysaccharides (LPSs)
 
  
 0.943
Your Current Organism:
Escherichia coli K12 MG1655
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli K12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (5%) [HD]