STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ssuDAlkanesulfonate monooxygenase, fmnh(2)-dependent; Involved in desulfonation of aliphatic sulfonates. Catalyzes the conversion of pentanesulfonic acid to sulfite and pentaldehyde and is able to desulfonate a wide range of sulfonated substrates including C-2 to C-10 unsubstituted linear alkanesulfonates, substituted ethanesulfonic acids and sulfonated buffers (381 aa)    
Predicted Functional Partners:
ssuC
Aliphatic sulfonate abc transporter membrane subunit; Part of a binding-protein-dependent transport system for aliphatic sulfonates. Probably responsible for the translocation of the substrate across the membrane
 
 0.999
ssuE
Nad(p)h-dependent fmn reductase; Catalyzes an NADPH-dependent reduction of FMN, but is also able to reduce FAD or riboflavin
 0.999
ssuB
Aliphatic sulfonate abc transporter atp binding subunit; Part of the ABC transporter complex SsuABC involved in aliphatic sulfonates import. Responsible for energy coupling to the transport system (Probable)
 
 
 0.998
ssuA
Aliphatic sulfonate abc transporter periplasmic binding protein; Part of a binding-protein-dependent transport system for aliphatic sulfonates. Putative binding protein
 0.998
cysI
Sulfite reductase, beta subunit, nad(p)-binding, heme-binding; Component of the sulfite reductase complex that catalyzes the 6-electron reduction of sulfite to sulfide. This is one of several activities required for the biosynthesis of L-cysteine from sulfate
   
 
 0.965
tauD
Taurine dioxygenase, 2-oxoglutarate-dependent; Catalyzes the alpha-ketoglutarate-dependent hydroxylation of taurine yielding sulfite and aminoacetaldehyde after decomposition of an unstable intermediate . Is required for the utilization of taurine (2-aminoethanesulfonate) as an alternative sulfur source for growth in the absence of sulfate . To a lesser extent, pentanesulfonate, 3-(N-morpholino)propanesulfonate and 1,3-dioxo-2-isoindolineethanesulfonate are also desulfonated by this enzyme in vitro; however, desulfonation by TauD of organosulfonates other than taurine seem to be of lit [...]
 
 
  0.941
cysJ
Sulfite reductase (nadph) flavoprotein alpha-component; Component of the sulfite reductase complex that catalyzes the 6-electron reduction of sulfite to sulfide. This is one of several activities required for the biosynthesis of L-cysteine from sulfate. The flavoprotein component catalyzes the electron flow from NADPH -> FAD -> FMN to the hemoprotein component
     
 0.935
cysH
Phosphoadenosine phosphosulfate reductase; Reduction of activated sulfate into sulfite
     
 0.908
sseA
Thiosulfate/3-mercaptopyruvate sulfurtransferase; Transfers a sulfur ion to cyanide or to other thiol compounds. Also has weak rhodanese activity (130-fold lower). Its participation in detoxification of cyanide may be small. May be involved in the enhancement of serine sensitivity
     
  0.900
glpE
Thiosulfate:cyanide sulfurtransferase (rhodanese); Catalyzes, although with low efficiency, the sulfur transfer reaction from thiosulfate to cyanide. The relatively low affinity of GlpE for both thiosulfate and cyanide suggests that these compounds are not the physiological substrates. Thioredoxin 1 or related dithiol proteins could instead be the physiological sulfur-acceptor substrate. Possible association with the metabolism of glycerol-phosphate remains to be elucidated
     
  0.900
Your Current Organism:
Escherichia coli K12 MG1655
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli K12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (22%) [HD]