close STRING Database User Survey
Please help us improve further — take a moment to fill our brief user survey.
STRING protein interaction network
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
protein homology
Your Input:
Gene Fusion
tmkHypothetical protein; Catalyzes the reversible phosphorylation of deoxythymidine monophosphate (dTMP) to deoxythymidine diphosphate (dTDP), using ATP as its preferred phosphoryl donor. Situated at the junction of both de novo and salvage pathways of deoxythymidine triphosphate (dTTP) synthesis, is essential for DNA synthesis and cellular growth (213 aa)    
Predicted Functional Partners:
Septation protein, ampicillin sensitivity; Functions as a peptidoglycan terminase that cleaves nascent peptidoglycan strands endolytically to terminate their elongation
Dna polymerase iii, delta prime subunit; Part of the beta sliding clamp loading complex, which hydrolyzes ATP to load the beta clamp onto primed DNA to form the DNA replication pre-initiation complex . DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. This DNA polymerase also exhibits 3' to 5' exonuclease activity. The gamma complex (gamma(3),delta,delta') is thought to load beta dimers onto DNA by binding ATP which alters the complex's conformation so it can bind beta sliding clamp dimers and open them at one interface. P [...]
Thymidylate synthetase; Catalyzes the reductive methylation of 2'-deoxyuridine-5'- monophosphate (dUMP) to 2'-deoxythymidine-5'-monophosphate (dTMP) while utilizing 5,10-methylenetetrahydrofolate (mTHF) as the methyl donor and reductant in the reaction, yielding dihydrofolate (DHF) as a by-product . This enzymatic reaction provides an intracellular de novo source of dTMP, an essential precursor for DNA biosynthesis. This protein also binds to its mRNA thus repressing its own translation
Thymidine kinase/deoxyuridine kinase; Phosphorylates both thymidine and deoxyuridine
Deoxyuridine triphosphatase; This enzyme is involved in nucleotide metabolism: it produces dUMP, the immediate precursor of thymidine nucleotides and it decreases the intracellular concentration of dUTP so that uracil cannot be incorporated into DNA
Adenylate kinase; Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. Plays an important role in cellular energy homeostasis and in adenine nucleotide metabolism
4-amino-4-deoxychorismate lyase component of para-aminobenzoate synthase multienzyme complex; Involved in the biosynthesis of p-aminobenzoate (PABA), a precursor of tetrahydrofolate. Converts 4-amino-4-deoxychorismate into 4-aminobenzoate (PABA) and pyruvate
Ribonucleoside-diphosphate reductase 2, alpha subunit; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. R1E contains the binding sites for both substrates and allosteric effectors and carries out the actual reduction of the ribonucleotide
Ribonucleoside-diphosphate reductase 2, beta subunit, ferritin-like protein; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. R2F contains the tyrosyl radical required for catalysis
Putative metal-dependent hydrolase ycfh; Has D-tyrosyl-tRNA deacylase activity in vitro
Your Current Organism:
Escherichia coli K12 MG1655
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli K12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (18%) [HD]