STRING protein interaction network
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
protein homology
Your Input:
Gene Fusion
ydhUPutative cytochrome b subunit of ydhyvwxut oxidoreductase complex; Putative cytochrome YdhU; Putative enzyme; Not classified (261 aa)    
Predicted Functional Partners:
annotation not available
annotation not available
annotation not available
Thiosulfate/3-mercaptopyruvate sulfurtransferase; Transfers a sulfur ion to cyanide or to other thiol compounds. Also has weak rhodanese activity (130-fold lower). Its participation in detoxification of cyanide may be small. May be involved in the enhancement of serine sensitivity
Putative 4fe-4s ferredoxin-type protein; Uncharacterized ferredoxin-like protein YdhX; Putative oxidoreductase, Fe-S subunit
(Microbial infection) In addition to its role in cysteine synthesis, stimulates the tRNase activity of CdiA-CT from E.coli strain 536 / UPEC; stimulation does not require O-acetylserine sulfhydrylase activity. CdiA is the toxic component of a toxin-immunity protein module, which functions as a cellular contact-dependent growth inhibition (CDI) system. CDI modules allow bacteria to communicate with and inhibit the growth of closely related neighboring bacteria in a contact-dependent fashion (experiments done in strains BW25113 and X90, both K12 derivatives). This protein is not required [...]
Sulfite reductase, beta subunit, nad(p)-binding, heme-binding; Component of the sulfite reductase complex that catalyzes the 6-electron reduction of sulfite to sulfide. This is one of several activities required for the biosynthesis of L-cysteine from sulfate
Sulfite reductase (nadph) flavoprotein alpha-component; Component of the sulfite reductase complex that catalyzes the 6-electron reduction of sulfite to sulfide. This is one of several activities required for the biosynthesis of L-cysteine from sulfate. The flavoprotein component catalyzes the electron flow from NADPH -> FAD -> FMN to the hemoprotein component
Thiosulfate:cyanide sulfurtransferase (rhodanese); Catalyzes, although with low efficiency, the sulfur transfer reaction from thiosulfate to cyanide. The relatively low affinity of GlpE for both thiosulfate and cyanide suggests that these compounds are not the physiological substrates. Thioredoxin 1 or related dithiol proteins could instead be the physiological sulfur-acceptor substrate. Possible association with the metabolism of glycerol-phosphate remains to be elucidated
O-succinylhomoserine(thiol)-lyase/o-succinylhomoserine lyase; Catalyzes the formation of L-cystathionine from O-succinyl-L- homoserine (OSHS) and L-cysteine, via a gamma-replacement reaction. In the absence of thiol, catalyzes gamma-elimination to form 2- oxobutanoate, succinate and ammonia
Your Current Organism:
Escherichia coli K12 MG1655
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli K12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (10%) [HD]