STRING protein interaction network
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
protein homology
Your Input:
Gene Fusion
yejMInner membrane protein YejM; Putative sulfatase (586 aa)    
Predicted Functional Partners:
Nucleoid-associated protein YejK; Protein present in spermidine nucleoids
annotation not available
Putative membrane protein IgaA homolog; Putative dehydrogenase
4'-phosphopantetheinyl transferase AcpT; May be involved in an alternative pathway for phosphopantetheinyl transfer and holo-ACP synthesis in E.coli. The native apo-protein substrate is unknown. Is able to functionally replace AcpS in vivo but only when expressed at high levels
Lipopolysaccharide export system protein LptC; Involved in the assembly of lipopolysaccharide (LPS). Required for the translocation of LPS from the inner membrane to the outer membrane. Facilitates the transfer of LPS from the inner membrane to the periplasmic protein LptA. Could be a docking site for LptA; Belongs to the LptC family
7,8-dihydro-6-hydroxymethylpterin- pyrophosphokinase; Protein involved in folic acid biosynthetic process; Belongs to the HPPK family
RNA chaperone ProQ; RNA chaperone with significant RNA binding, RNA strand exchange and RNA duplexing activities. May regulate ProP activity through an RNA-based, post-transcriptional mechanism
Cell division protein FtsN; Essential cell division protein that activates septal peptidoglycan synthesis and constriction of the cell. Acts on both sides of the membrane, via interaction with FtsA in the cytoplasm and interaction with the FtsQBL complex in the periplasm. These interactions may induce a conformational switch in both FtsA and FtsQBL, leading to septal peptidoglycan synthesis by FtsI and associated synthases (Probable). Required for full FtsI activity. Required for recruitment of AmiC to the septal ring; Belongs to the FtsN family
Regulator of ribonuclease activity B; Globally modulates RNA abundance by binding to RNase E (Rne) and regulating its endonucleolytic activity. Can modulate Rne action in a substrate-dependent manner by altering the composition of the degradosome; Belongs to the RraB family
Cell division protein ZapB; Non-essential, abundant cell division factor that is required for proper Z-ring formation. It is recruited early to the divisome by direct interaction with FtsZ, stimulating Z-ring assembly and thereby promoting cell division earlier in the cell cycle. Its recruitment to the Z-ring requires functional FtsA or ZipA; Belongs to the ZapB family
Your Current Organism:
Escherichia coli K12 MG1655
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli K12 MG1655, Escherichia coli K12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (13%) [HD]