STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
napBNitrate reductase, small, cytochrome C550 subunit, periplasmic; Electron transfer subunit of the periplasmic nitrate reductase complex NapAB. Receives electrons from the membrane-anchored tetraheme c-type NapC protein and transfers these to NapA subunit, thus allowing electron flow between membrane and periplasm. Essential for periplasmic nitrate reduction with nitrate as the terminal electron acceptor; Belongs to the NapB family. (149 aa)    
Predicted Functional Partners:
napC
Quinol dehydrogenase, electron source for NapAB; Mediates electron flow from quinones to the NapAB complex.
 
  
 0.999
napH
Ferredoxin-type protein; Required for electron transfer from ubiquinol, via NapC, to the periplasmic nitrate reductase NapAB complex.
 
 
 0.999
napG
Ferredoxin-type protein; Required for electron transfer from ubiquinol, via NapC, to the periplasmic nitrate reductase NapAB complex.
 
 
 0.999
napA
Nitrate reductase, periplasmic, large subunit; Catalytic subunit of the periplasmic nitrate reductase complex NapAB. Receives electrons from NapB and catalyzes the reduction of nitrate to nitrite; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family. NasA/NapA/NarB subfamily.
 
 0.999
napD
Assembly protein for periplasmic nitrate reductase; Chaperone for NapA, the catalytic subunit of the periplasmic nitrate reductase. It binds directly and specifically to the twin- arginine signal peptide of NapA, preventing premature interaction with the Tat translocase and premature export. May have a role in the insertion of the NapA molybdenum cofactor.
  
  
 0.998
napF
Ferredoxin-type protein, role in electron transfer to periplasmic nitrate reductase NapA; Could be involved in the maturation of NapA, the catalytic subunit of the periplasmic nitrate reductase, before its export into the periplasm. Is not involved in the electron transfer from menaquinol or ubiquinol to the periplasmic nitrate reductase.
 
  
 0.995
nrfA
Nitrite reductase, formate-dependent, cytochrome; Catalyzes the reduction of nitrite to ammonia, consuming six electrons in the process. Has very low activity toward hydroxylamine. Has even lower activity toward sulfite. Sulfite reductase activity is maximal at neutral pH (By similarity).
  
 
 0.976
torC
Trimethylamine N-oxide (TMAO) reductase I, cytochrome c-type subunit; Part of the anaerobic respiratory chain of trimethylamine-N- oxide reductase TorA. Acts by transferring electrons from the membranous menaquinones to TorA. This transfer probably involves an electron transfer pathway from menaquinones to the N-terminal domain of TorC, then from the N-terminus to the C-terminus, and finally to TorA. TorC apocytochrome negatively autoregulates the torCAD operon probably by inhibiting the TorS kinase activity.
 
  
 0.961
nirD
Nitrite reductase (NADH) small subunit; Required for activity of the reductase. To B.subtilis NasE.
   
 
 0.958
narG
Nitrate reductase 1, alpha subunit; The nitrate reductase enzyme complex allows E.coli to use nitrate as an electron acceptor during anaerobic growth. The alpha chain is the actual site of nitrate reduction.
   
 
 0.945
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (38%) [HD]