STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
iscUNitrogen fixation protein nifu and related proteins; A scaffold on which IscS assembles Fe-S clusters. Exists as 2 interconverting forms, a structured (S) and disordered (D) form. The D- state is the preferred substrate for IscS. Converts to the S-state when an Fe-S cluster is assembled, which helps it dissociate from IscS to transfer the Fe-S to an acceptor. It is likely that Fe-S cluster coordination is flexible as the role of this complex is to build and then hand off Fe-S clusters (128 aa)    
Predicted Functional Partners:
fdx
[2Fe-2S] ferredoxin; Ferredoxin are iron-sulfur proteins that transfer electrons in a wide variety of metabolic reactions. Although the function of this ferredoxin is unknown it is probable that it has a role as a cellular electron transfer protein. Involved in the in vivo assembly of the Fe-S clusters in a wide variety of iron-sulfur proteins
 
 0.999
hscA
Dnak-like molecular chaperone specific for iscu; Chaperone involved in the maturation of iron-sulfur cluster- containing proteins. Has a low intrinsic ATPase activity which is markedly stimulated by HscB. Involved in the maturation of IscU
 
 
 0.999
hscB
Hsca co-chaperone, j domain-containing protein hsc56; Co-chaperone involved in the maturation of iron-sulfur cluster-containing proteins. Seems to help targeting proteins to be folded toward HscA
 
 
 0.999
iscS
Cysteine desulfurase (trna sulfurtransferase), plp-dependent; Master enzyme that delivers sulfur to a number of partners involved in Fe-S cluster assembly, tRNA modification or cofactor biosynthesis. Catalyzes the removal of elemental sulfur from cysteine to produce alanine. Functions as a sulfur delivery protein for Fe-S cluster synthesis onto IscU, an Fe-S scaffold assembly protein, as well as other S acceptor proteins. Preferentially binds to disordered IscU on which the Fe-S is assembled, IscU converts to the structured state and then dissociates from IscS to transfer the Fe-S to a [...]
 
 0.999
cyaY
Iron-dependent inhibitor of iron-sulfur cluster formation; Involved in iron-sulfur (Fe-S) cluster assembly . May act as a regulator of Fe-S biogenesis Can bind both Fe(2+) and Fe(3+) ions . In vivo, has a positive effect on Fe-S cluster biogenesis under iron- rich growth conditions . In vitro, can inhibit IscS cysteine desulfurase activity and the formation of Fe-S clusters on IscU . In vitro, in the presence of IscS and cysteine, Fe(3+)-CyaY can be used as an iron donor during Fe-S cluster assembly on the scaffold protein IscU
  
 0.999
iscA
Iron-sulfur cluster insertion protein isca; Is able to transfer iron-sulfur clusters to apo-ferredoxin. Multiple cycles of [2Fe2S] cluster formation and transfer are observed, suggesting that IscA acts catalytically. Recruits intracellular free iron so as to provide iron for the assembly of transient iron-sulfur cluster in IscU in the presence of IscS, L-cysteine and the thioredoxin reductase system TrxA/TrxB
  
 0.998
iscR
Rrf2 family transcriptional regulator, iron-sulfur cluster assembly transcription factor; Regulates the transcription of several operons and genes involved in the biogenesis of Fe-S clusters and Fe-S-containing proteins. Transcriptional repressor of the iscRSUA operon, which is involved in the assembly of Fe-S clusters into Fe-S proteins. In its apoform, under conditions of oxidative stress or iron deprivation, it activates the suf operon, which is a second operon involved in the assembly of Fe-S clusters. Represses its own transcription as well as that of toxin rnlA
  
  
 0.998
nfuA
Fe/s biogenesis protein, putative scaffold/chaperone protein; Involved in iron-sulfur cluster biogenesis under severe conditions such as iron starvation or oxidative stress. Binds a 4Fe-4S cluster, can transfer this cluster to apoproteins, and thereby intervenes in the maturation of Fe/S proteins. Could also act as a scaffold/chaperone for damaged Fe/S proteins. Required for E.coli to sustain oxidative stress and iron starvation. Also necessary for the use of extracellular DNA as the sole source of carbon and energy
  
 
 0.996
sufS
Cysteine desulfurases mobilize the sulfur from L-cysteine to yield L-alanine, an essential step in sulfur metabolism for biosynthesis of a variety of sulfur-containing biomolecules. Component of the suf operon, which is activated and required under specific conditions such as oxidative stress and iron limitation. Acts as a potent selenocysteine lyase in vitro, that mobilizes selenium from L- selenocysteine. Selenocysteine lyase activity is however unsure in vivo
  
 
 0.994
iscX
Fe(2+) donor and activity modulator for cysteine desulfurase; May function as iron donor in the assembly of iron-sulfur clusters
 
 
 0.992
Your Current Organism:
Escherichia coli K12 MG1655
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli K12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (6%) [HD]