STRING protein interaction network
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
protein homology
Your Input:
Gene Fusion
nadKInvolved in the regulation of the intracellular balance of NAD and NADP, and is a key enzyme in the biosynthesis of NADP. Catalyzes specifically the phosphorylation on 2'-hydroxyl of the adenosine moiety of NAD to yield NADP. It can use ATP and other nucleoside triphosphates (UTP, CTP, GTP, dATP, TTP) as phosphoryl donors, while nucleoside mono- or diphosphates and poly(P) can not. (292 aa)    
Predicted Functional Partners:
Catalyzes the reversible adenylation of nicotinate mononucleotide (NaMN) to nicotinic acid adenine dinucleotide (NaAD).
Catalyzes the ATP-dependent amidation of deamido-NAD to form NAD. Uses ammonia as a nitrogen source
Conversion of NADPH, generated by peripheral catabolic pathways, to NADH, which can enter the respiratory chain for energy generation
NAD-dependent lysine deacetylase and desuccinylase that specifically removes acetyl and succinyl groups on target proteins. Modulates the activities of several proteins which are inactive in their acylated form. Activates the enzyme acetyl-CoA synthetase by deacetylating 'Lys-609' in the inactive, acetylated form of the enzyme. May also modulate the activity of other propionyl-adenosine monophosphate (AMP)-forming enzymes. ECO:0000269|PubMed:10811920, ECO:0000269|PubMed:15019790,
The transhydrogenation between NADH and NADP is coupled to respiration and ATP hydrolysis and functions as a proton pump across the membrane
This enzyme has three activities: DNA binding, nicotinamide mononucleotide (NMN) adenylyltransferase and ribosylnicotinamide (RN) kinase. The DNA-binding domain binds to the nadB operator sequence in an NAD- and ATP-dependent manner. As NAD levels increase within the cell, the affinity of NadR for the nadB operator regions of nadA, nadB, and pncB increases, repressing the transcription of these genes. The RN kinase activity catalyzes the phosphorylation of RN to form nicotinamide ribonucleotide. The NMN adenylyltransferase activity catalyzes the transfer of the AMP moiety of ATP to nic [...]
The transhydrogenation between NADH and NADP is coupled to respiration and ATP hydrolysis and functions as a proton pump across the membrane
Catalyzes the hydrolysis of a broad range of dinucleotide pyrophosphates, but uniquely prefers the reduced form of NADH.
Involved in the regulation of bacterial cell survival under conditions of nutritional stress. Regulates the type II MazE-MazF toxin-antitoxin (TA) system which mediates programmed cell death (PCD). This is achieved by lowering the cellular concentration of (p)ppGpp produced by RelA under amino acid starvation, thus protecting the cell from the toxicity of MazF. Reduction of (p)ppGpp can be achieved by direct degradation of (p)ppGpp or by degradation of NTPs, which are substrates for (p)ppGpp synthesis by RelA.
Inositol-1-monophosphatase; Protein involved in transcription
Your Current Organism:
Escherichia coli K12 MG1655
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli K12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (3%) [HD]