node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
nrdA | nrdB | b2234 | b2235 | Ribonucleoside-diphosphate reductase 1, alpha subunit; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. R1 contains the binding sites for both substrates and allosteric effectors and carries out the actual reduction of the ribonucleotide. It also provides redox-active cysteines | Ribonucleoside-diphosphate reductase 1, beta subunit, ferritin-like protein; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. R2 contains the tyrosyl radical required for catalysis | 0.999 |
nrdA | nrdD | b2234 | b4238 | Ribonucleoside-diphosphate reductase 1, alpha subunit; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. R1 contains the binding sites for both substrates and allosteric effectors and carries out the actual reduction of the ribonucleotide. It also provides redox-active cysteines | Ribonucleoside-triphosphate reductase (formate); Catalyzes the conversion of ribonucleotides into deoxyribonucleotides, which are required for DNA synthesis and repair | 0.931 |
nrdA | nrdE | b2234 | b2675 | Ribonucleoside-diphosphate reductase 1, alpha subunit; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. R1 contains the binding sites for both substrates and allosteric effectors and carries out the actual reduction of the ribonucleotide. It also provides redox-active cysteines | Ribonucleoside-diphosphate reductase 2, alpha subunit; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. R1E contains the binding sites for both substrates and allosteric effectors and carries out the actual reduction of the ribonucleotide | 0.869 |
nrdA | nrdF | b2234 | b2676 | Ribonucleoside-diphosphate reductase 1, alpha subunit; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. R1 contains the binding sites for both substrates and allosteric effectors and carries out the actual reduction of the ribonucleotide. It also provides redox-active cysteines | Ribonucleoside-diphosphate reductase 2, beta subunit, ferritin-like protein; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. R2F contains the tyrosyl radical required for catalysis | 0.988 |
nrdA | nrdG | b2234 | b4237 | Ribonucleoside-diphosphate reductase 1, alpha subunit; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. R1 contains the binding sites for both substrates and allosteric effectors and carries out the actual reduction of the ribonucleotide. It also provides redox-active cysteines | Anaerobic ribonucleoside-triphosphate reductase activating protein; Activation of anaerobic ribonucleoside-triphosphate reductase under anaerobic conditions by generation of an organic free radical, using S-adenosylmethionine and reduced flavodoxin as cosubstrates to produce 5'-deoxy-adenosine | 0.889 |
nrdA | nrdH | b2234 | b2673 | Ribonucleoside-diphosphate reductase 1, alpha subunit; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. R1 contains the binding sites for both substrates and allosteric effectors and carries out the actual reduction of the ribonucleotide. It also provides redox-active cysteines | Hydrogen donor for nrdef electron transport system; Electron transport system for the ribonucleotide reductase system NrdEF | 0.782 |
nrdA | nrdI | b2234 | b2674 | Ribonucleoside-diphosphate reductase 1, alpha subunit; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. R1 contains the binding sites for both substrates and allosteric effectors and carries out the actual reduction of the ribonucleotide. It also provides redox-active cysteines | Dimanganese-tyrosyl radical cofactor maintenance flavodoxin nrdi; Probably involved in ribonucleotide reductase function | 0.831 |
nrdA | nrdR | b2234 | b0413 | Ribonucleoside-diphosphate reductase 1, alpha subunit; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. R1 contains the binding sites for both substrates and allosteric effectors and carries out the actual reduction of the ribonucleotide. It also provides redox-active cysteines | Nrdr transcriptional repressor; Represses transcription of the class Ib RNR genes nrdHIEF but has much smaller effect on transcription of the class Ia RNR genes nrdAB and class III RNR genes nrdDG. By binding to nrdR boxes in the promoter regions to alter promoter activity, nrdR differentially regulates nrdAB, nrdHIEF and nrdD transcription in aerobic growth | 0.783 |
nrdA | trxB | b2234 | b0888 | Ribonucleoside-diphosphate reductase 1, alpha subunit; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. R1 contains the binding sites for both substrates and allosteric effectors and carries out the actual reduction of the ribonucleotide. It also provides redox-active cysteines | Thioredoxin reductase, fad/nad(p)-binding; Belongs to the class-II pyridine nucleotide-disulfide oxidoreductase family | 0.661 |
nrdB | nrdA | b2235 | b2234 | Ribonucleoside-diphosphate reductase 1, beta subunit, ferritin-like protein; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. R2 contains the tyrosyl radical required for catalysis | Ribonucleoside-diphosphate reductase 1, alpha subunit; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. R1 contains the binding sites for both substrates and allosteric effectors and carries out the actual reduction of the ribonucleotide. It also provides redox-active cysteines | 0.999 |
nrdB | nrdD | b2235 | b4238 | Ribonucleoside-diphosphate reductase 1, beta subunit, ferritin-like protein; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. R2 contains the tyrosyl radical required for catalysis | Ribonucleoside-triphosphate reductase (formate); Catalyzes the conversion of ribonucleotides into deoxyribonucleotides, which are required for DNA synthesis and repair | 0.927 |
nrdB | nrdE | b2235 | b2675 | Ribonucleoside-diphosphate reductase 1, beta subunit, ferritin-like protein; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. R2 contains the tyrosyl radical required for catalysis | Ribonucleoside-diphosphate reductase 2, alpha subunit; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. R1E contains the binding sites for both substrates and allosteric effectors and carries out the actual reduction of the ribonucleotide | 0.987 |
nrdB | nrdF | b2235 | b2676 | Ribonucleoside-diphosphate reductase 1, beta subunit, ferritin-like protein; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. R2 contains the tyrosyl radical required for catalysis | Ribonucleoside-diphosphate reductase 2, beta subunit, ferritin-like protein; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. R2F contains the tyrosyl radical required for catalysis | 0.870 |
nrdB | nrdG | b2235 | b4237 | Ribonucleoside-diphosphate reductase 1, beta subunit, ferritin-like protein; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. R2 contains the tyrosyl radical required for catalysis | Anaerobic ribonucleoside-triphosphate reductase activating protein; Activation of anaerobic ribonucleoside-triphosphate reductase under anaerobic conditions by generation of an organic free radical, using S-adenosylmethionine and reduced flavodoxin as cosubstrates to produce 5'-deoxy-adenosine | 0.888 |
nrdB | nrdH | b2235 | b2673 | Ribonucleoside-diphosphate reductase 1, beta subunit, ferritin-like protein; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. R2 contains the tyrosyl radical required for catalysis | Hydrogen donor for nrdef electron transport system; Electron transport system for the ribonucleotide reductase system NrdEF | 0.678 |
nrdB | nrdI | b2235 | b2674 | Ribonucleoside-diphosphate reductase 1, beta subunit, ferritin-like protein; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. R2 contains the tyrosyl radical required for catalysis | Dimanganese-tyrosyl radical cofactor maintenance flavodoxin nrdi; Probably involved in ribonucleotide reductase function | 0.914 |
nrdB | nrdR | b2235 | b0413 | Ribonucleoside-diphosphate reductase 1, beta subunit, ferritin-like protein; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. R2 contains the tyrosyl radical required for catalysis | Nrdr transcriptional repressor; Represses transcription of the class Ib RNR genes nrdHIEF but has much smaller effect on transcription of the class Ia RNR genes nrdAB and class III RNR genes nrdDG. By binding to nrdR boxes in the promoter regions to alter promoter activity, nrdR differentially regulates nrdAB, nrdHIEF and nrdD transcription in aerobic growth | 0.681 |
nrdB | trxB | b2235 | b0888 | Ribonucleoside-diphosphate reductase 1, beta subunit, ferritin-like protein; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. R2 contains the tyrosyl radical required for catalysis | Thioredoxin reductase, fad/nad(p)-binding; Belongs to the class-II pyridine nucleotide-disulfide oxidoreductase family | 0.460 |
nrdD | nrdA | b4238 | b2234 | Ribonucleoside-triphosphate reductase (formate); Catalyzes the conversion of ribonucleotides into deoxyribonucleotides, which are required for DNA synthesis and repair | Ribonucleoside-diphosphate reductase 1, alpha subunit; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. R1 contains the binding sites for both substrates and allosteric effectors and carries out the actual reduction of the ribonucleotide. It also provides redox-active cysteines | 0.931 |
nrdD | nrdB | b4238 | b2235 | Ribonucleoside-triphosphate reductase (formate); Catalyzes the conversion of ribonucleotides into deoxyribonucleotides, which are required for DNA synthesis and repair | Ribonucleoside-diphosphate reductase 1, beta subunit, ferritin-like protein; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. R2 contains the tyrosyl radical required for catalysis | 0.927 |