STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ptsPPEP-protein phosphotransferase enzyme I; Component of the phosphoenolpyruvate-dependent nitrogen- metabolic phosphotransferase system (nitrogen-metabolic PTS), that seems to be involved in regulating nitrogen metabolism. Enzyme I-Ntr transfers the phosphoryl group from phosphoenolpyruvate (PEP) to the phosphoryl carrier protein (NPr). Could function in the transcriptional regulation of sigma-54 dependent operons in conjunction with the NPr (PtsO) and EIIA-Ntr (PtsN) proteins. Enzyme I-Ntr is specific for NPr. (748 aa)    
Predicted Functional Partners:
npr
Phosphohistidinoprotein-hexose phosphotransferase component of N-regulated PTS system (Npr); Component of the phosphoenolpyruvate-dependent nitrogen- metabolic phosphotransferase system (nitrogen-metabolic PTS), that seems to be involved in regulating nitrogen metabolism. The phosphoryl group from phosphoenolpyruvate (PEP) is transferred to the phosphoryl carrier protein NPr by enzyme I-Ntr. Phospho-NPr then transfers it to EIIA-Ntr. Could function in the transcriptional regulation of sigma-54 dependent operons in conjunction with the NPr (PtsO) and EIIA-Ntr (PtsN) proteins.
  
 
 0.999
fruB
Fused fructose-specific PTS enzymes: IIA component/HPr component; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The enzyme II FruAB PTS system is involved in fructose transport.
 
   
 0.964
crr
Glucose-specific enzyme IIA component of PTS; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The enzyme II complex composed of PtsG and Crr is involved in glucose transport. The non-phosphorylated EIII-Glc is an inhibitor for uptake of certain sugars such as maltose, melibiose, lactose, and glycerol. Phosphorylated EIII-Glc, however, may be an activator for adenylate cyclase. It is an im [...]
 
   
 0.946
ptsN
Sugar-specific enzyme IIA component of PTS; Seems to have a role in regulating nitrogen assimilation.
  
   
 0.927
ptsH
Phosphohistidinoprotein-hexose phosphotransferase component of PTS system (Hpr); General (non sugar-specific) component of the phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS). This major carbohydrate active-transport system catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The phosphoryl group from phosphoenolpyruvate (PEP) is transferred to the phosphoryl carrier protein HPr by enzyme I. Phospho-HPr then transfers it to the PTS EIIA domain.
 
   
 0.923
rppH
RNA pyrophosphohydrolase; Master regulator of 5'-end-dependent mRNA decay. Accelerates the degradation of transcripts by removing pyrophosphate from the 5'-end of triphosphorylated RNA, leading to a more labile monophosphorylated state that can stimulate subsequent ribonuclease cleavage. Preferentially hydrolyzes diadenosine penta-phosphate with ATP as one of the reaction products. Also able to hydrolyze diadenosine hexa- and tetra-phosphate. Has no activity on diadenosine tri-phosphate, ADP-ribose, NADH and UDP-glucose. In an RNase PH (rph) wild-type strain background, RppH is not req [...]
  
  
 0.864
trkA
NAD-binding component of TrK potassium transporter; Part of the constitutive potassium transport systems TrkG and TrkH. May regulate the transport activity of TrkG and TrkH systems. Binds to NAD(+) and NADH.
   
  
 0.624
kdpD
Fused sensory histidine kinase in two-component regulatory system with KdpE: signal sensing protein; Member of the two-component regulatory system KdpD/KdpE involved in the regulation of the kdp operon. KdpD may function as a membrane-associated protein kinase that phosphorylates KdpE in response to environmental signals.
   
 
 0.622
ppdA
Putative prepilin peptidase-dependent protein; Not yet known.
      0.602
frvA
Putative enzyme IIA component of PTS; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The enzyme II FrvAB PTS system is involved in fructose transport.
  
   
 0.584
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (24%) [HD]