STRING protein interaction network
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
protein homology
Your Input:
Gene Fusion
truBtRNA pseudouridine synthase B; Responsible for synthesis of pseudouridine from uracil- 55 in the psi GC loop of transfer RNAs; Belongs to the pseudouridine synthase TruB family. Type 1 subfamily (314 aa)    
Predicted Functional Partners:
30S ribosome-binding factor; One of at least 4 proteins (Era, RbfA, RimM and RsgA/YjeQ) that assist in the late maturation steps of the functional core of the 30S subunit. Essential for efficient processing of pre-16S rRNA. Probably part of the 30S subunit prior to or during the final step in the processing of 16S free 30S ribosomal subunits. Probably interacts with the 5'-terminal helix region of 16S rRNA. Has affinity for free ribosomal 30S subunits but not for 70S ribosomes. Overexpression suppresses a cold-sensitive C23U 16S rRNA mutation. Overexpression decreases the lag time foll [...]
Translation initiation factor IF-2; One of the essential components for the initiation of protein synthesis. May protect N-formylmethionyl-tRNA(fMet) from spontaneous hydrolysis. Promotes N-formylmethionyl-tRNA(fMet) binding to the 30S pre-initiation complex (PIC). Also involved in the hydrolysis of GTP during the formation of the 70S ribosomal complex. Upon addition of the 50S ribosomal subunit, IF-1, IF-2 and IF-3 are released leaving the mature 70S translation initation complex
Ribosomal RNA small subunit methyltransferase A; Specifically dimethylates two adjacent adenosines (A1518 and A1519) in the loop of a conserved hairpin near the 3'-end of 16S rRNA in the 30S particle. May play a critical role in biogenesis of 30S subunits. Has also a DNA glycosylase/AP lyase activity that removes C mispaired with oxidized T from DNA, and may play a role in protection of DNA against oxidative stress
Ribosome maturation factor RimP; Required for maturation of 30S ribosomal subunits, probably at a late stage of ribosomal protein binding, while Era is associated and after RimM
30S ribosomal protein S15; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it helps nucleate assembly of the platform of the 30S subunit by binding and bridging several RNA helices of the 16S rRNA. Binds to its own mRNA, stabilizing it 5-UTR and preventing its translation
Ribosomal RNA small subunit methyltransferase B; Specifically methylates the cytosine at position 967 (m5C967) of 16S rRNA
Ribosomal RNA small subunit methyltransferase F; Specifically methylates the cytosine at position 1407 (m5C1407) of 16S rRNA
30S ribosomal protein S1; Required for translation of most natural mRNAs except for leaderless mRNA. Binds mRNA upstream of the Shine-Dalgarno (SD) sequence and helps it bind to the 30S ribosomal subunit; acts as an RNA chaperone to unfold structured mRNA on the ribosome but is not essential for mRNAs with strong SDs and little 5'-UTR structure, thus it may help fine-tune which mRNAs that are translated. Unwinds dsRNA by binding to transiently formed ssRNA regions; binds about 10 nucleotides. Has a preference for polypyrimidine tracts. Negatively autoregulates its own translation
GMP synthase [glutamine-hydrolyzing]; Catalyzes the synthesis of GMP from XMP
tRNA(Met) cytidine acetyltransferase TmcA; Catalyzes the formation of N(4)-acetylcytidine (ac(4)C) at the wobble position of tRNA(Met), by using acetyl-CoA as an acetyl donor and ATP (or GTP). It recognizes the wobble base of tRNA(Met), thus distinguishing between tRNA(Met) and the structurally similar tRNA(Ile2)
Your Current Organism:
Escherichia coli K12 MG1655
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli K12 MG1655, Escherichia coli K12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (9%) [HD]