STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
greATranscript cleavage factor; Necessary for efficient RNA polymerase transcription elongation past template-encoded arresting sites. The arresting sites in DNA have the property of trapping a certain fraction of elongating RNA polymerases that pass through, resulting in locked ternary complexes. Cleavage of the nascent transcript by cleavage factors such as GreA or GreB allows the resumption of elongation from the new 3'terminus. GreA releases sequences of 2 to 3 nucleotides. (158 aa)    
Predicted Functional Partners:
dksA
Transcriptional regulator of rRNA transcription; Transcription factor that acts by binding directly to the RNA polymerase (RNAP). Required for negative regulation of rRNA expression and positive regulation of several amino acid biosynthesis promoters. Also required for regulation of fis expression. Binding to RNAP disrupts interaction of RNAP with DNA, inhibits formation of initiation complexes, and amplifies effects of ppGpp and the initiating NTP on rRNA transcription. Inhibits transcript elongation, exonucleolytic RNA cleavage and pyrophosphorolysis, and increases intrinsic terminat [...]
  
 
 0.987
nusG
Transcription termination factor; Participates in transcription elongation, termination and antitermination. In the absence of Rho, increases the rate of transcription elongation by the RNA polymerase (RNAP), probably by partially suppressing pausing. In the presence of Rho, modulates most Rho-dependent termination events by interacting with the RNAP to render the complex more susceptible to the termination activity of Rho. May be required to overcome a kinetic limitation of Rho to function at certain terminators. Also involved in ribosomal RNA and phage lambda N-mediated transcription [...]
  
  
 0.950
rpoC
RNA polymerase, beta prime subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
  
 
 0.949
rpoB
RNA polymerase, beta subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
  
 
 0.925
mfd
Transcription-repair coupling factor; Couples transcription and DNA repair by recognizing RNA polymerase (RNAP) stalled at DNA lesions. Mediates ATP-dependent release of RNAP and its truncated transcript from the DNA, and recruitment of nucleotide excision repair machinery to the damaged site. Can also dissociate RNAP that is blocked by low concentration of nucleoside triphosphates or by physical obstruction, such as bound proteins. In addition, can rescue arrested complexes by promoting forward translocation. Has ATPase activity, which is required for removal of stalled RNAP, but seem [...]
     
 0.918
rpoA
RNA polymerase, alpha subunit; DNA-dependent RNA polymerase (RNAP) catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. This subunit plays an important role in subunit assembly since its dimerization is the first step in the sequential assembly of subunits to form the holoenzyme.
  
 
 0.900
rho
Transcription termination factor; Facilitates transcription termination by a mechanism that involves Rho binding to the nascent RNA, activation of Rho's RNA- dependent ATPase activity, and release of the mRNA from the DNA template. RNA-dependent NTPase which utilizes all four ribonucleoside triphosphates as substrates.
  
 
 0.895
rpoZ
RNA polymerase, omega subunit; Promotes RNA polymerase assembly. Latches the N- and C- terminal regions of the beta' subunit thereby facilitating its interaction with the beta and alpha subunits.
 
 
 0.889
rpoD
RNA polymerase, sigma 70 (sigma D) factor; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the primary sigma factor during exponential growth. Preferentially transcribes genes associated with fast growth, such as ribosomal operons, other protein-synthesis related genes, rRNA- and tRNA-encoding genes and prfB. Belongs to the sigma-70 factor family. RpoD/SigA subfamily.
 
  
 0.867
nusB
Transcription antitermination protein; Involved in transcription antitermination. Required for transcription of ribosomal RNA (rRNA) genes. Binds specifically to the boxA antiterminator sequence of the ribosomal RNA (rrn) operons. The affinity of NusB for the boxA RNA sequence is significantly increased in the presence of the ribosomal protein S10. NusB may serve as a loading factor that ensures efficient entry of S10 into the transcription complexes. It also modulates the rrn boxA-mediated transcription elongation rates.
 
  
 0.785
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (32%) [HD]