STRING protein interaction network
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
protein homology
Your Input:
Gene Fusion
yhbJAdaptor protein for glmz/glmy srna decay, glucosamine-6-phosphate-regulated; Modulates the synthesis of GlmS, by affecting the processing and stability of the regulatory small RNA GlmZ. When glucosamine-6- phosphate (GlcN6P) concentrations are high in the cell, RapZ binds GlmZ and targets it to cleavage by RNase E. Consequently, GlmZ is inactivated and unable to activate GlmS synthesis. Under low GlcN6P concentrations, RapZ is sequestered and inactivated by an other regulatory small RNA, GlmY, preventing GlmZ degradation and leading to synthesis of GlmS . Displays ATPase and GTPase act [...] (284 aa)    
Predicted Functional Partners:
Phosphohistidinoprotein-hexose phosphotransferase component of n-regulated pts system (npr); Component of the phosphoenolpyruvate-dependent nitrogen- metabolic phosphotransferase system (nitrogen-metabolic PTS), that seems to be involved in regulating nitrogen metabolism. The phosphoryl group from phosphoenolpyruvate (PEP) is transferred to the phosphoryl carrier protein NPr by enzyme I-Ntr. Phospho-NPr then transfers it to EIIA-Ntr. Could function in the transcriptional regulation of sigma-54 dependent operons in conjunction with the NPr (PtsO) and EIIA-Ntr (PtsN) proteins
Sugar-specific enzyme iia component of pts; Seems to have a role in regulating nitrogen assimilation
Glutamine---fructose-6-phosphate transaminase (isomerizing); Catalyzes the first step in hexosamine metabolism, converting fructose-6P into glucosamine-6P using glutamine as a nitrogen source
Rna polymerase, sigma 54 (sigma n) factor; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is responsible for the expression of enzymes involved in arginine catabolism. The open complex (sigma-54 and core RNA polymerase) serves as the receptor for the receipt of the melting signal from the remotely bound activator protein GlnG(NtrC)
Ribosome hibernation promoting factor hpf; During stationary phase, promotes and stabilizes dimerization of 70S ribosomes by the ribosome modulation factor (RMF), leading to the formation of inactive 100S ribosomes . Converts immature 90S particles formed by RMF into 100S ribosomes . Crystallization with T.thermophilus 70S ribosomes shows it binds in the channel between the head and body of the 30S subunit, where mRNA, tRNAs, initiation factors IF1 and IF3 and elongation factor G would bind; however RMF is still able to bind . In this crystal binding of HPF induces movement of the 30S [...]
Lipopolysaccharide export abc transporter periplasmic binding protein; Involved in the assembly of lipopolysaccharide (LPS). Required for the translocation of LPS from the inner membrane to the outer membrane. May form a bridge between the inner membrane and the outer membrane, via interactions with LptC and LptD, thereby facilitating LPS transfer across the periplasm
Putative outer membrane protein modulating the qseef response; Uncharacterized protein YfhG; Putative alpha helix protein
Rna-binding protein hfq; RNA chaperone that binds small regulatory RNA (sRNAs) and mRNAs to facilitate mRNA translational regulation in response to envelope stress, environmental stress and changes in metabolite concentrations. Involved in the regulation of stress responses mediated by the sigma factors RpoS, sigma-E and sigma-32 . Binds with high specificity to tRNAs . Binds sRNA antitoxin RalA . In vitro, stimulates synthesis of long tails by poly(A) polymerase I . Required for RNA phage Qbeta replication . Seems to play a role in persister cell formation; upon overexpression decreas [...]
Response regulator regulating glmy srna in two-component system with sensor protein glrk; Member of the two-component regulatory system GlrR/GlrK that up-regulates transcription of the glmY sRNA when cells enter the stationary growth phase. Regulates glmY transcription by binding to three conserved sites in the purL-glmY intergenic region
Bifunctional udp-n-acetylglucosamine pyrophosphorylase / glucosamine-1-phosphate n-acetyltransferase; Catalyzes the last two sequential reactions in the de novo biosynthetic pathway for UDP-N-acetylglucosamine (UDP-GlcNAc). The C- terminal domain catalyzes the transfer of acetyl group from acetyl coenzyme A to glucosamine-1-phosphate (GlcN-1-P) to produce N- acetylglucosamine-1-phosphate (GlcNAc-1-P), which is converted into UDP-GlcNAc by the transfer of uridine 5-monophosphate (from uridine 5- triphosphate), a reaction catalyzed by the N-terminal domain
Your Current Organism:
Escherichia coli K12 MG1655
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli K12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (9%) [HD]