STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
yibNPutative rhodanese-related sulfurtransferase. (143 aa)    
Predicted Functional Partners:
grxC
Glutaredoxin 3; The disulfide bond functions as an electron carrier in the glutathione-dependent synthesis of deoxyribonucleotides by the enzyme ribonucleotide reductase. In addition, it is also involved in reducing some disulfide bonds in a coupled system with glutathione reductase; Belongs to the glutaredoxin family.
 
  
 0.979
secB
Protein export chaperone; One of the proteins required for the normal export of some preproteins out of the cell cytoplasm. It is a molecular chaperone that binds to a subset of precursor proteins, maintaining them in a translocation-competent state. For 2 proteins (MBP, MalE and PhoA) the substrate is wrapped around the homotetramer, which prevents it from folding. It also specifically binds to its receptor SecA. Its substrates include DegP, FhuA, FkpA, GBP, LamB, MalE (MBP), OmpA, OmpF, OmpT, OmpX, OppA, PhoE, TolB, TolC, YbgF, YcgK, YgiW and YncE.
  
 0.892
yicN
DUF1198 family protein.
      
 0.783
gpsA
Glycerol-3-phosphate dehydrogenase (NAD+); Protein involved in glycerol metabolic process and phosphorus metabolic process; Belongs to the NAD-dependent glycerol-3-phosphate dehydrogenase family.
 
  
 0.709
dsbA
Periplasmic protein disulfide isomerase I; Required for disulfide bond formation in some periplasmic proteins such as PhoA or OmpA. Acts by transferring its disulfide bond to other proteins and is reduced in the process. DsbA is reoxidized by DsbB. Required for pilus biogenesis. PhoP-regulated transcription is redox-sensitive, being activated when the periplasm becomes more reducing (deletion of dsbA/dsbB, treatment with dithiothreitol). MgrB acts between DsbA/DsbB and PhoP/PhoQ in this pathway. Belongs to the thioredoxin family. DsbA subfamily.
 
  
 0.693
glpE
Thiosulfate:cyanide sulfurtransferase (rhodanese); Catalyzes, although with low efficiency, the sulfur transfer reaction from thiosulfate to cyanide. The relatively low affinity of GlpE for both thiosulfate and cyanide suggests that these compounds are not the physiological substrates. Thioredoxin 1 or related dithiol proteins could instead be the physiological sulfur-acceptor substrate. Possible association with the metabolism of glycerol-phosphate remains to be elucidated.
  
  
 0.633
secE
Preprotein translocase membrane subunit; Essential subunit of the protein translocation channel SecYEG. Clamps together the 2 halves of SecY. May contact the channel plug during translocation. Overexpression of some hybrid proteins has been thought to jam the protein secretion apparatus resulting in cell death; while this may be true it also results in FtsH-mediated degradation of SecY; Belongs to the SecE/SEC61-gamma family.
  
  
 0.608
rpsQ
30S ribosomal subunit protein S17; One of the primary rRNA binding proteins, it binds specifically to the 5'-end of 16S ribosomal RNA. Also plays a role in translational accuracy; neamine-resistant ribosomes show reduced neamine-induced misreading in vitro.
   
   0.599
ybeY
ssRNA-specific endoribonuclease; Single strand-specific metallo-endoribonuclease involved in late-stage 70S ribosome quality control and in maturation of the 3' terminus of the 16S rRNA. Acts together with the RNase R to eliminate defective 70S ribosomes, but not properly matured 70S ribosomes or individual subunits, by a process mediated specifically by the 30S ribosomal subunit. Involved in the processing of 16S, 23S and 5S rRNAs, with a particularly strong effect on maturation at both the 5'- and 3'- ends of 16S rRNA as well as maturation of the 5'-end of 23S and 5S rRNAs.
    
   0.575
atpF
F0 sector of membrane-bound ATP synthase, subunit b; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.
   
    0.566
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: medium (56%) [HD]