STRING protein interaction network
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
protein homology
Your Input:
Gene Fusion
trmHtRNA (guanosine(18)-2'-O)-methyltransferase; Catalyzes the 2'-O methylation of guanosine at position 18 in tRNA. Type II methylase, which methylates only a subset of tRNA species (229 aa)    
Predicted Functional Partners:
ATP-dependent DNA helicase RecG; Play a critical role in recombination and DNA repair. Helps process Holliday junction intermediates to mature products by catalyzing branch migration. Has a DNA unwinding activity characteristic of a DNA helicase with 3'- to 5'- polarity. Unwinds branched duplex DNA (Y-DNA). Has a role in constitutive stable DNA replication (cSDR) and R-loop formation. Is genetically synergistic to RadA and RuvABC; Belongs to the helicase family. RecG subfamily
Bifunctional (p)ppGpp synthase/hydrolase SpoT; In eubacteria ppGpp (guanosine 3'-diphosphate 5-' diphosphate) is a mediator of the stringent response which coordinates a variety of cellular activities in response to changes in nutritional abundance. This enzyme catalyzes both the synthesis and degradation of ppGpp. The second messengers ppGpp and c-di-GMP together control biofilm formation in response to translational stress; ppGpp represses biofilm formation while c- di-GMP induces it. ppGpp activates transcription of CsrA- antagonistic small RNAs CsrB and CsrC, which downregulate Csr [...]
DNA-directed RNA polymerase subunit omega; Promotes RNA polymerase assembly. Latches the N- and C- terminal regions of the beta' subunit thereby facilitating its interaction with the beta and alpha subunits
tRNA (guanine-N(1)-)-methyltransferase; Specifically methylates guanosine-37 in various tRNAs; Belongs to the RNA methyltransferase TrmD family
tRNA (cytidine(34)-2'-O)-methyltransferase; Methylates the ribose at the nucleotide 34 wobble position in the two leucyl isoacceptors tRNA(Leu)(CmAA) and tRNA(Leu)(cmnm5UmAA). Catalyzes the methyl transfer from S- adenosyl-L-methionine to the 2'-OH of the wobble nucleotide. Recognition of the target requires a pyridine at position 34 and N(6)-(isopentenyl)-2-methylthioadenosine at position 37
tRNA (cytidine/uridine-2'-O-)-methyltransferase TrmJ; Catalyzes the formation of 2'O-methylated cytidine (Cm32) or 2'O-methylated uridine (Um32) at position 32 in tRNA. Can also methylate adenosine or guanosine, even though these nucleosides are rare or absent at position 32 in the anticodon loop of tRNA
Guanylate kinase; Essential for recycling GMP and indirectly, cGMP; Belongs to the guanylate kinase family
tRNA pseudouridine synthase C; Responsible for synthesis of pseudouridine from uracil- 65 in transfer RNAs
Sodium/glutamate symporter; Catalyzes the sodium-dependent, binding-protein- independent transport of glutamate; Belongs to the glutamate:Na(+) symporter (ESS) (TC 2.A.27) family
tRNA pseudouridine synthase D; Responsible for synthesis of pseudouridine from uracil- 13 in transfer RNAs
Your Current Organism:
Escherichia coli K12 MG1655
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli K12 MG1655, Escherichia coli K12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (10%) [HD]