STRING protein interaction network
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
protein homology
Your Input:
Gene Fusion
chrRQuinone reductase; Catalyzes the reduction of quinones. Acts by simultaneous two-electron transfer, avoiding formation of highly reactive semiquinone intermediates and producing quinols that promote tolerance of H(2)O(2). Quinone reduction is probably the primary biological role of ChrR (By similarity). Can also reduce toxic chromate to insoluble and less toxic Cr(3+). Catalyzes the transfer of three electrons to Cr(6+) producing Cr(3+) and one electron to molecular oxygen without producing the toxic Cr(5+) species and only producing a minimal amount of reactive oxygen species (ROS). C [...] (188 aa)    
Predicted Functional Partners:
annotation not available
N-methyl-L-tryptophan oxidase; Catalyzes the oxidative demethylation of N-methyl-L- tryptophan. Can also use other N-methyl amino acids, including sarcosine, which, however, is a poor substrate
FhuE receptor; Required for the uptake of Fe(3+) via coprogen, ferrioxamine B, and rhodotorulic acid
FMN-dependent NADH-azoreductase; Catalyzes the reductive cleavage of azo bond in aromatic azo compounds to the corresponding amines. Requires NADH, but not NADPH, as an electron donor for its activity. The enzyme can reduce ethyl red and methyl red, but is not able to convert sulfonated azo dyes
Modulator of drug activity B; Protein involved in response to drug; To H.influenzae HI_0648 and S.pombe SPAC5H10.05c
Putative monooxygenase YdhR; May function as monooxygenase and play a role in the metabolism of aromatic compounds
Low-affinity inorganic phosphate transporter 1; Low-affinity inorganic phosphate transport. Can also transport arsenate
NAD(P)H dehydrogenase (quinone); It seems to function in response to environmental stress when various electron transfer chains are affected or when the environment is highly oxidizing. It reduces quinones to the hydroquinone state to prevent interaction of the semiquinone with O2 and production of superoxide. It prefers NADH over NADPH; Belongs to the WrbA family
Diaminopropionate ammonia-lyase; Catalyzes the alpha,beta-elimination reaction of both L- and D-alpha,beta-diaminopropionate (DAP) to form pyruvate and ammonia. In vitro the D-isomer of serine is degraded to pyruvate, though very poorly; other amino acids (L-serine, D- and L- threonine, D- and L-beta-Cl-alanine) are not substrates. In vivo allows poor growth on L-DAP or a DL-DAP mixture but not on D-DAP alone, this may be due to a poor promoter. DL-DAP is toxic in the absence of this enzyme, it may inhibit enzymes involved in the synthesis of pyruvate and aspartate, as well as amino ac [...]
D-phenylhydantoinase; Catalyzes the stereospecific hydrolysis of the cyclic amide bond of D-hydantoin derivatives with an aromatic side chains at the 5'-position. Has no activity on dihydropyrimidines. The physiological function is unknown
Your Current Organism:
Escherichia coli K12 MG1655
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli K12 MG1655, Escherichia coli K12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (13%) [HD]