STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
glmUBifunctional udp-n-acetylglucosamine pyrophosphorylase / glucosamine-1-phosphate n-acetyltransferase; Catalyzes the last two sequential reactions in the de novo biosynthetic pathway for UDP-N-acetylglucosamine (UDP-GlcNAc). The C- terminal domain catalyzes the transfer of acetyl group from acetyl coenzyme A to glucosamine-1-phosphate (GlcN-1-P) to produce N- acetylglucosamine-1-phosphate (GlcNAc-1-P), which is converted into UDP-GlcNAc by the transfer of uridine 5-monophosphate (from uridine 5- triphosphate), a reaction catalyzed by the N-terminal domain (456 aa)    
Predicted Functional Partners:
glmM
Phosphoglucosamine mutase; Catalyzes the conversion of glucosamine-6-phosphate to glucosamine-1-phosphate. Can also catalyze the formation of glucose-6-P from glucose-1-P, although at a 1400-fold lower rate
 
 0.998
glmS
Glutamine---fructose-6-phosphate transaminase (isomerizing); Catalyzes the first step in hexosamine metabolism, converting fructose-6P into glucosamine-6P using glutamine as a nitrogen source
 
 0.998
murA
Udp-n-acetylglucosamine 1-carboxyvinyltransferase; Cell wall formation . Adds enolpyruvyl to UDP-N-acetylglucosamine . Target for the antibiotic fosfomycin
 
 0.991
prs
Phosphoribosylpyrophosphate synthase; Involved in the biosynthesis of the central metabolite phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) via the transfer of pyrophosphoryl group from ATP to 1-hydroxyl of ribose-5-phosphate (Rib- 5-P)
  
 0.967
wecB
Udp-n-acetylglucosamine 2-epimerase (non-hydrolysing); Catalyzes the reversible epimerization at C-2 of UDP-N- acetylglucosamine (UDP-GlcNAc) and thereby provides bacteria with UDP- N-acetylmannosamine (UDP-ManNAc), the activated donor of ManNAc residues. Also involved in bacteriophage N4 adsorption
 
 
 0.947
lpxA
Udp-n-acetylglucosamine acetyltransferase; Involved in the biosynthesis of lipid A, a phosphorylated glycolipid that anchors the lipopolysaccharide to the outer membrane of the cell
  
 
 0.936
pta
Phosphate acetyltransferase; Involved in acetate metabolism. Catalyzes the reversible interconversion of acetyl-CoA and acetyl phosphate. The direction of the overall reaction changes depending on growth conditions. On minimal medium acetyl-CoA is generated. In rich medium acetyl-CoA is converted to acetate and allowing the cell to dump the excess of acetylation potential in exchange for energy in the form of ATP
  
 
 0.914
murD
Udp-n-acetylmuramoyl-l-alanine--d-glutamate ligase; Cell wall formation. Catalyzes the addition of glutamate to the nucleotide precursor UDP-N-acetylmuramoyl-L-alanine (UMA)
  
  
 0.908
murB
Udp-n-acetylenolpyruvoylglucosamine reductase, fad-binding; Cell wall formation
   
  
 0.884
murC
Udp-n-acetylmuramate--l-alanine ligase; Cell wall formation
 
 
 0.864
Your Current Organism:
Escherichia coli K12 MG1655
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli K12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (6%) [HD]