STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
metHhomocysteine-N5-methyltetrahydrofolate transmethylase, B12-dependent; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate. (1227 aa)    
Predicted Functional Partners:
metF
5,10-methylenetetrahydrofolate reductase; Methylenetetrahydrofolate reductase required to generate the methyl groups necessary for methionine synthetase to convert homocysteine to methionine.
 
 
 0.999
metE
5-methyltetrahydropteroyltriglutamate- homocysteine S-methyltransferase; Catalyzes the transfer of a methyl group from 5- methyltetrahydrofolate to homocysteine resulting in methionine formation.
  
 
 0.997
metB
Cystathionine gamma-synthase, PLP-dependent; Catalyzes the formation of L-cystathionine from O-succinyl-L- homoserine (OSHS) and L-cysteine, via a gamma-replacement reaction. In the absence of thiol, catalyzes gamma-elimination to form 2- oxobutanoate, succinate and ammonia.
  
 
 0.984
metK
S-adenosylmethionine synthetase; Catalyzes the formation of S-adenosylmethionine (AdoMet) from methionine and ATP. The overall synthetic reaction is composed of two sequential steps, AdoMet formation and the subsequent tripolyphosphate hydrolysis which occurs prior to release of AdoMet from the enzyme. Is essential for growth.
  
 
 0.983
metC
Cystathionine beta-lyase, PLP-dependent; Primarily catalyzes the cleavage of cystathionine to homocysteine, pyruvate and ammonia during methionine biosynthesis. Also exhibits cysteine desulfhydrase activity, producing sulfide from cysteine. In addition, under certain growth conditions, exhibits significant alanine racemase coactivity.
  
 
 0.976
glyA
Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. Thus, is able to catalyze the cleavage of allothreonine and 3-phenylserine. Also catalyzes the irreversible conversion of 5,10-m [...]
   
 
 0.974
gcvT
Aminomethyltransferase, tetrahydrofolate-dependent, subunit (T protein) of glycine cleavage complex; The glycine cleavage system catalyzes the degradation of glycine.
  
 
 0.965
metL
Bifunctional aspartokinase/homoserine dehydrogenase 2; Aspartokinase II and homoserine dehydrogenase II; Protein involved in methionine biosynthetic process and homoserine biosynthetic process.
  
 
 0.963
thrA
Bifunctional: aspartokinase I (N-terminal); homoserine dehydrogenase I (C-terminal); Protein involved in threonine biosynthetic process, methionine biosynthetic process and homoserine biosynthetic process.
  
 
 0.958
luxS
S-ribosylhomocysteine lyase; Involved in the synthesis of autoinducer 2 (AI-2) which is secreted by bacteria and is used to communicate both the cell density and the metabolic potential of the environment. The regulation of gene expression in response to changes in cell density is called quorum sensing. Catalyzes the transformation of S-ribosylhomocysteine (RHC) to homocysteine (HC) and 4,5-dihydroxy-2,3-pentadione (DPD). Belongs to the LuxS family.
    
 0.955
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (24%) [HD]