STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
lpdDihydrolipoamide dehydrogenase; Lipoamide dehydrogenase is a component of the alpha-ketoacid dehydrogenase complexes; Belongs to the class-I pyridine nucleotide-disulfide oxidoreductase family. (469 aa)    
Predicted Functional Partners:
gcvH
Glycine cleavage system H protein; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein.
 
  
 0.993
gcvT
Glycine cleavage system T protein; The glycine cleavage system catalyzes the degradation of glycine.
 
 0.967
Cpar_0560
PFAM: 4Fe-4S ferredoxin iron-sulfur binding domain protein; pyruvate ferredoxin/flavodoxin oxidoreductase; pyruvate flavodoxin/ferredoxin oxidoreductase domain protein; KEGG: cte:CT1628 pyruvate flavodoxin/ferrodoxin oxidoreductase.
    
 0.944
gcvPB
Glycine dehydrogenase (decarboxylating); The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family. C-terminal subunit subfamily.
 
 
 0.941
gcvPA
Glycine dehydrogenase (decarboxylating); The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein.
 
 
 0.940
glyA
Glycine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism.
 
 0.934
Cpar_1875
PFAM: pyruvate flavodoxin/ferredoxin oxidoreductase domain protein; KEGG: pvi:Cvib_1597 pyruvate flavodoxin/ferredoxin oxidoreductase domain protein.
    
 0.923
prs
Ribose-phosphate pyrophosphokinase; Involved in the biosynthesis of the central metabolite phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) via the transfer of pyrophosphoryl group from ATP to 1-hydroxyl of ribose-5-phosphate (Rib- 5-P); Belongs to the ribose-phosphate pyrophosphokinase family. Class I subfamily.
  
 0.908
Cpar_1876
PFAM: thiamine pyrophosphate protein domain protein TPP-binding; KEGG: pvi:Cvib_1598 2-oxoglutarate ferredoxin oxidoreductase subunit beta.
     
 0.907
Cpar_0814
PFAM: biotin/lipoate A/B protein ligase; KEGG: cte:CT1342 lipoate-protein ligase A, putative.
 
 
 0.895
Your Current Organism:
Chlorobaculum parvum
NCBI taxonomy Id: 517417
Other names: C. parvum NCIB 8327, Chlorobaculum parvum NCIB 8327, Chlorobaculum parvum str. NCIB 8327, Chlorobaculum parvum strain NCIB 8327
Server load: low (28%) [HD]