Full Link:
STRINGSTRING
ung protein (Sulfurospirillum deleyianum) - STRING interaction network
"ung" - uracil-DNA glycosylase in Sulfurospirillum deleyianum
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
unguracil-DNA glycosylase; Excises uracil residues from the DNA which can arise as a result of misincorporation of dUMP residues by DNA polymerase or due to deamination of cytosine (224 aa)    
Predicted Functional Partners:
Sdel_0004
DNA polymerase III subunit beta; DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. This DNA polymerase also exhibits 3’ to 5’ exonuclease activity. The beta chain is required for initiation of replication once it is clamped onto DNA, it slides freely (bidirectional and ATP- independent) along duplex DNA (355 aa)
   
 
  0.947
Sdel_0010
A/G-specific adenine glycosylase (317 aa)
   
 
  0.945
Sdel_0541
Exodeoxyribonuclease III (254 aa)
     
  0.853
ndk
Nucleoside-diphosphate kinase; Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate (137 aa)
     
 
  0.828
Sdel_0558
DNA polymerase I (885 aa)
     
   
  0.778
gyrB
DNA gyrase subunit beta; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner (770 aa)
   
 
  0.683
hisC
Histidinol-phosphate aminotransferase (366 aa)
       
 
  0.654
Sdel_1151
Deoxyribodipyrimidine photo-lyase (452 aa)
     
 
  0.644
topA
DNA topoisomerase I; Releases the supercoiling and torsional tension of DNA, which is introduced during the DNA replication and transcription, by transiently cleaving and rejoining one strand of the DNA duplex. Introduces a single-strand break via transesterification at a target site in duplex DNA. The scissile phosphodiester is attacked by the catalytic tyrosine of the enzyme, resulting in the formation of a DNA-(5’-phosphotyrosyl)-enzyme intermediate and the expulsion of a 3’-OH DNA strand. The free DNA strand then undergoes passage around the unbroken strand, thus removing DNA super [...] (694 aa)
   
   
  0.625
pheT
phenylalanyl-tRNA synthetase subunit beta (779 aa)
     
 
  0.585
Your Current Organism:
Sulfurospirillum deleyianum
NCBI taxonomy Id: 525898
Other names: Dehalospirillum, Dehalospirillum Scholz-Muramatsu et al. 2002, Geospirillum, S. deleyianum, S. deleyianum DSM 6946, Sulfurospirillum, Sulfurospirillum deleyianum, Sulfurospirillum deleyianum DSM 6946, Sulfurospirillum deleyianum str. DSM 6946, Sulfurospirillum deleyianum strain DSM 6946
Server load: low (5%) [HD]