STRINGSTRING
dksA protein (Pantoea agglomerans) - STRING interaction network
"dksA" - RNA polymerase-binding transcription factor DksA in Pantoea agglomerans
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
dksARNA polymerase-binding transcription factor DksA; Transcription factor that acts by binding directly to the RNA polymerase (RNAP). Required for negative regulation of rRNA expression and positive regulation of several amino acid biosynthesis promoters. Also required for regulation of fis expression (151 aa)    
Predicted Functional Partners:
rpoZ
DNA-directed RNA polymerase subunit omega; Promotes RNA polymerase assembly. Latches the N- and C- terminal regions of the beta’ subunit thereby facilitating its interaction with the beta and alpha subunits (91 aa)
 
 
  0.977
rpoC
DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates (1407 aa)
   
 
 
  0.948
rpoA
DNA-directed RNA polymerase subunit alpha; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates (329 aa)
   
 
 
  0.942
gluQ
Glutamyl-Q tRNA(Asp) synthetase; Catalyzes the tRNA-independent activation of glutamate in presence of ATP and the subsequent transfer of glutamate onto a tRNA(Asp). Glutamate is transferred on the 2-amino-5-(4,5- dihydroxy-2-cyclopenten-1-yl) moiety of the queuosine in the wobble position of the QUC anticodon (292 aa)
       
  0.941
rpoB
DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates (1342 aa)
   
 
 
  0.912
pcnB
Poly(A) polymerase I; Adds poly(A) tail to the 3’ end of many RNAs, which usually targets these RNAs for decay. Plays a significant role in the global control of gene expression, through influencing the rate of transcript degradation, and in the general RNA quality control (443 aa)
     
  0.907
rpoD_2
RNA polymerase sigma factor RpoD; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the primary sigma factor during exponential growth (613 aa)
   
 
  0.747
rpoD_1
annotation not available (613 aa)
   
 
  0.747
rpoS
annotation not available (330 aa)
       
 
  0.705
sfsA
annotation not available (234 aa)
   
   
  0.660
Your Current Organism:
Pantoea agglomerans
NCBI taxonomy Id: 549
Other names: ATCC 27155, Bacillus milletiae, Bacterium herbicola, CCUG 539, CFBP 3845, CIP 57.51, DSM 3493, Enterobacter agglomerans, Erwinia herbicola, Erwinia milletiae, ICMP 12534, ICPB 3435, NBRC 102470, NCTC 9381, P. agglomerans, Pantoea agglomerans, Pantoea herbicola, Pseudomonas herbicola
Server load: low (10%) [HD]