STRINGSTRING
ftsH protein (Dehalogenimonas lykanthroporepellens) - STRING interaction network
"ftsH" - ATP-dependent zinc metalloprotease FtsH in Dehalogenimonas lykanthroporepellens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ftsHATP-dependent zinc metalloprotease FtsH; Acts as a processive, ATP-dependent zinc metallopeptidase for both cytoplasmic and membrane proteins. Plays a role in the quality control of integral membrane proteins; Belongs to the AAA ATPase family (649 aa)    
Predicted Functional Partners:
fusA
Elongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post- translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome (696 aa)
 
   
  0.709
lepA
Elongation factor 4; Required for accurate and efficient protein synthesis under certain stress conditions. May act as a fidelity factor of the translation reaction, by catalyzing a one-codon backward translocation of tRNAs on improperly translocated ribosomes. Back- translocation proceeds from a post-translocation (POST) complex to a pre-translocation (PRE) complex, thus giving elongation factor G a second chance to translocate the tRNAs correctly. Binds to ribosomes in a GTP-dependent manner (607 aa)
 
 
  0.685
guaA
GMP synthase [glutamine-hydrolyzing]; Catalyzes the synthesis of GMP from XMP (566 aa)
   
   
  0.670
polA
DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5’-3’ exonuclease activity (915 aa)
   
   
  0.650
alaS
Alanine--tRNA ligase; Catalyzes the attachment of alanine to tRNA(Ala) in a two-step reaction- alanine is first activated by ATP to form Ala- AMP and then transferred to the acceptor end of tRNA(Ala). Also edits incorrectly charged Ser-tRNA(Ala) and Gly-tRNA(Ala) via its editing domain (856 aa)
 
   
  0.646
Dehly_1123
KEGG- det-DET0392 AP endonuclease; PFAM- Xylose isomerase domain protein TIM barrel; SMART- AP endonuclease family 2 (281 aa)
   
   
  0.615
Dehly_0973
Small GTP-binding protein; KEGG- dev-DhcVS_995 translation elongation factor, GTPase; TIGRFAM- small GTP-binding protein; PFAM- protein synthesis factor GTP-binding; elongation factor Tu domain 2 protein; elongation factor G domain IV; elongation factor G domain protein (688 aa)
 
   
  0.599
obg
GTPase Obg; An essential GTPase which binds GTP, GDP and possibly (p)ppGpp with moderate affinity, with high nucleotide exchange rates and a fairly low GTP hydrolysis rate. Plays a role in control of the cell cycle, stress response, ribosome biogenesis and in those bacteria that undergo differentiation, in morphogenesis control; Belongs to the TRAFAC class OBG-HflX-like GTPase superfamily. OBG GTPase family (417 aa)
 
   
  0.595
dnaK
Chaperone protein DnaK; Acts as a chaperone (642 aa)
 
 
  0.587
infB
Translation initiation factor IF-2; One of the essential components for the initiation of protein synthesis. Protects formylmethionyl-tRNA from spontaneous hydrolysis and promotes its binding to the 30S ribosomal subunits. Also involved in the hydrolysis of GTP during the formation of the 70S ribosomal complex (588 aa)
 
   
  0.582
Your Current Organism:
Dehalogenimonas lykanthroporepellens
NCBI taxonomy Id: 552811
Other names: Chloroflexi bacterium BL-DC-8, Chloroflexi bacterium BL-DC-9, D. lykanthroporepellens BL-DC-9, Dehalogenimonas lykanthroporepellens, Dehalogenimonas lykanthroporepellens BL-DC-9, Dehalogenimonas lykanthroporepellens str. BL-DC-9, Dehalogenimonas lykanthroporepellens strain BL-DC-9
Server load: low (11%) [HD]