STRINGSTRING
leuS protein (Dehalogenimonas lykanthroporepellens) - STRING interaction network
"leuS" - leucyl-tRNA synthetase in Dehalogenimonas lykanthroporepellens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
leuSleucyl-tRNA synthetase (815 aa)    
Predicted Functional Partners:
proS
prolyl-tRNA synthetase; Catalyzes the attachment of proline to tRNA(Pro) in a two-step reaction- proline is first activated by ATP to form Pro- AMP and then transferred to the acceptor end of tRNA(Pro). As ProRS can inadvertently accommodate and process non-cognate amino acids such as alanine and cysteine, to avoid such errors it has two additional distinct editing activities against alanine. One activity is designated as ’pretransfer’ editing and involves the tRNA(Pro)-independent hydrolysis of activated Ala-AMP. The other activity is designated ’posttransfer’ editing and involves dea [...] (573 aa)
 
  0.990
ileS
isoleucyl-tRNA synthetase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as ’pretransfer’ editing and involves the hydrolysis of activated Val-AMP. The other activity is designated ’posttransfer’ editing and involves deacylation of mischarged Val-tRNA(Ile) (1015 aa)
   
0.956
alaS
alanyl-tRNA synthetase; Catalyzes the attachment of alanine to tRNA(Ala) in a two-step reaction- alanine is first activated by ATP to form Ala- AMP and then transferred to the acceptor end of tRNA(Ala). Also edits incorrectly charged Ser-tRNA(Ala) and Gly-tRNA(Ala) via its editing domain (856 aa)
   
 
  0.948
lysS
lysyl-tRNA synthetase (493 aa)
   
  0.914
pheT
phenylalanyl-tRNA synthetase subunit beta (812 aa)
   
  0.905
gltX
glutamyl-tRNA synthetase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two-step reaction- glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu) (488 aa)
 
  0.901
valS
valyl-tRNA synthetase; Catalyzes the attachment of valine to tRNA(Val). As ValRS can inadvertently accommodate and process structurally similar amino acids such as threonine, to avoid such errors, it has a "posttransfer" editing activity that hydrolyzes mischarged Thr-tRNA(Val) in a tRNA-dependent manner (880 aa)
     
 
0.887
Dehly_0881
Class II tRNA synthetase (300 aa)
   
  0.881
Dehly_0682
aspartyl-tRNA synthetase (598 aa)
 
   
  0.881
argS
arginyl-tRNA synthetase (557 aa)
   
  0.861
Your Current Organism:
Dehalogenimonas lykanthroporepellens
NCBI taxonomy Id: 552811
Other names: Chloroflexi bacterium BL-DC-8, Chloroflexi bacterium BL-DC-9, D. lykanthroporepellens, D. lykanthroporepellens BL-DC-9, Dehalogenimonas, Dehalogenimonas lykanthroporepellens, Dehalogenimonas lykanthroporepellens BL-DC-9, Dehalogenimonas lykanthroporepellens str. BL-DC-9, Dehalogenimonas lykanthroporepellens strain BL-DC-9
Server load: low (11%) [HD]