STRINGSTRING
smc protein (Acidaminococcus intestini) - STRING interaction network
"smc" - Chromosome segregation protein SMC in Acidaminococcus intestini
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
smcChromosome segregation protein SMC; Required for chromosome condensation and partitioning (1186 aa)    
Predicted Functional Partners:
scpA
Chromosome segregation and condensation protein scpA; Participates in chromosomal partition during cell division. May act via the formation of a condensin-like complex containing Smc and ScpB that pull DNA away from mid-cell into both cell halves (249 aa)
 
 
 
  0.975
ftsY
Signal recognition particle-docking protein ftsY; Involved in targeting and insertion of nascent membrane proteins into the cytoplasmic membrane. Acts as a receptor for the complex formed by the signal recognition particle (SRP) and the ribosome-nascent chain (RNC) (304 aa)
   
 
  0.915
Acin_1174
Segregation and condensation protein B; Participates in chromosomal partition during cell division. May act via the formation of a condensin-like complex containing Smc and ScpA that pull DNA away from mid-cell into both cell halves (130 aa)
 
 
  0.895
gyrA
Type IIA topoisomerase; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner (842 aa)
     
 
  0.822
pyrR
Pyrimidine regulatory protein pyrR; Also displays a weak uracil phosphoribosyltransferase activity which is not physiologically significant (174 aa)
              0.815
gyrB
Type IIA topoisomerase; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner (648 aa)
     
 
  0.801
sbcC
Hypothetical protein; SbcCD cleaves DNA hairpin structures. These structures can inhibit DNA replication and are intermediates in certain DNA recombination reactions. The complex acts as a 3’->5’ double strand exonuclease that can open hairpins. It also has a 5’ single-strand endonuclease activity (751 aa)
   
  0.778
topA
DNA topoisomerase I; Releases the supercoiling and torsional tension of DNA, which is introduced during the DNA replication and transcription, by transiently cleaving and rejoining one strand of the DNA duplex. Introduces a single-strand break via transesterification at a target site in duplex DNA. The scissile phosphodiester is attacked by the catalytic tyrosine of the enzyme, resulting in the formation of a DNA-(5’-phosphotyrosyl)-enzyme intermediate and the expulsion of a 3’-OH DNA strand. The free DNA strand then undergoes passage around the unbroken strand, thus removing DNA super [...] (754 aa)
   
 
  0.726
lspA
Signal peptidase II; This protein specifically catalyzes the removal of signal peptides from prolipoproteins (151 aa)
              0.697
Acin_0650
Pseudouridine synthase; Responsible for synthesis of pseudouridine from uracil (318 aa)
   
        0.692
Your Current Organism:
Acidaminococcus intestini
NCBI taxonomy Id: 568816
Other names: A. intestini, A. intestini RyC-MR95, Acidaminococcus intestini, Acidaminococcus intestini Jumas-Bilak et al. 2007, Acidaminococcus intestini RyC-MR95, Acidaminococcus intestini strain RyC-MR95, Acidaminococcus sp. ADV 255.99
Server load: low (9%) [HD]