STRINGSTRING
ruvA protein (Acidaminococcus intestini) - STRING interaction network
"ruvA" - Holliday junction DNA helicase ruvA in Acidaminococcus intestini
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ruvAHolliday junction DNA helicase ruvA; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing. RuvA stimulates, in the presence of DNA, the weak ATPase activity of RuvB (201 aa)    
Predicted Functional Partners:
ruvB
Holliday junction DNA helicase ruvB; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing (335 aa)
 
  0.999
ruvC
Crossover junction endodeoxyribonuclease ruvC; Nuclease that resolves Holliday junction intermediates in genetic recombination. Cleaves the cruciform structure in supercoiled DNA by nicking to strands with the same polarity at sites symmetrically opposed at the junction in the homologous arms and leaves a 5’-terminal phosphate and a 3’-terminal hydroxyl group (178 aa)
 
  0.999
recG
ATP-dependent DNA helicase recG; Critical role in recombination and DNA repair. Helps process Holliday junction intermediates to mature products by catalyzing branch migration. Has a DNA unwinding activity characteristic of a DNA helicase with a 3’- to 5’- polarity. Unwinds branched duplex DNA (Y-DNA) (698 aa)
   
  0.987
Acin_0764
Hypothetical protein (440 aa)
              0.887
Acin_0763
Hypothetical protein (194 aa)
              0.887
uvrD
ATP-dependent DNA helicase pcrA (750 aa)
 
  0.839
recA
recA protein; Can catalyze the hydrolysis of ATP in the presence of single-stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage (354 aa)
 
   
  0.837
Acin_0199
Hypothetical protein (176 aa)
            0.823
Acin_0759
Hypothetical protein (243 aa)
              0.795
mutL
DNA mismatch repair protein mutL; This protein is involved in the repair of mismatches in DNA. It is required for dam-dependent methyl-directed DNA mismatch repair. May act as a "molecular matchmaker", a protein that promotes the formation of a stable complex between two or more DNA-binding proteins in an ATP-dependent manner without itself being part of a final effector complex (628 aa)
 
   
  0.779
Your Current Organism:
Acidaminococcus intestini
NCBI taxonomy Id: 568816
Other names: A. intestini, A. intestini RyC-MR95, Acidaminococcus intestini, Acidaminococcus intestini Jumas-Bilak et al. 2007, Acidaminococcus intestini RyC-MR95, Acidaminococcus intestini strain RyC-MR95, Acidaminococcus sp. ADV 255.99
Server load: low (7%) [HD]