STRINGSTRING
JG24_04330 protein (Klebsiella pneumoniae) - STRING interaction network
"JG24_04330" - Indirectly regulates nitrogen metabolism in Klebsiella pneumoniae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
JG24_04330Indirectly regulates nitrogen metabolism; at high nitrogen levels P-II prevents the phosphorylation of NR-I, the transcriptional activator of the glutamine synthetase gene (glnA); at low nitrogen levels P-II is uridylylated to form PII-UMP and interacts with an adenylyltransferase (GlnE) that activates GlnA; Derived by automated computational analysis using gene prediction method- Protein Homology (112 aa)    
Predicted Functional Partners:
JG24_04335
Ammonium transporter; Derived by automated computational analysis using gene prediction method- Protein Homology (428 aa)
 
  0.997
gltB
Glutamate synthase [NADPH] large chain; Catalyzes the formation of glutamate from glutamine and alpha-ketoglutarate; Derived by automated computational analysis using gene prediction method- Protein Homology (1486 aa)
 
   
  0.848
glnD
Bifunctional uridylyltransferase/uridylyl-removing enzyme; Modifies, by uridylylation and deuridylylation, the PII regulatory proteins (GlnB and homologs), in response to the nitrogen status of the cell that GlnD senses through the glutamine level. Under low glutamine levels, catalyzes the conversion of the PII proteins and UTP to PII-UMP and PPi, while under higher glutamine levels, GlnD hydrolyzes PII-UMP to PII and UMP (deuridylylation). Thus, controls uridylylation state and activity of the PII proteins, and plays an important role in the regulation of nitrogen metabolism (887 aa)
 
 
  0.804
glnL
Nitrogen regulation protein NtrB; Sensory histidine kinase in two-component regulatory system with GlnG; acts as a signal transducer which responds to the nitrogen level of cell and modulates the activity of ntrC by phosphorylation/dephosphorylation; Derived by automated computational analysis using gene prediction method- Protein Homology (349 aa)
   
 
  0.650
JG24_21745
Catalyzes the ATP-dependent addition of AMP to a subunit of glutamine synthetase; also catalyzes the reverse reaction - deadenylation; adenylation/deadenylation of glutamine synthetase subunits is important for the regulation of this enzyme; Derived by automated computational analysis using gene prediction method- Protein Homology (945 aa)
 
 
  0.644
glnA
Forms a homododecamer; forms glutamine from ammonia and glutamate with the conversion of ATP to ADP and phosphate; also functions in the assimilation of ammonia; highly regulated protein controlled by the addition/removal of adenylyl groups by adenylyltransferase from specific tyrosine residues; addition of adenylyl groups results in inactivation of the enzyme; Derived by automated computational analysis using gene prediction method- Protein Homology (469 aa)
 
 
  0.634
argB
Acetylglutamate kinase; Catalyzes the ATP-dependent phosphorylation of N-acetyl- L-glutamate (257 aa)
   
 
  0.607
argA
Amino-acid acetyltransferase; Catalyzes the formation of N-acetyl-L-glutamate from L-glutamate and acetyl-CoA in arginine biosynthesis; Derived by automated computational analysis using gene prediction method- Protein Homology; Belongs to the acetyltransferase family. ArgA subfamily (443 aa)
   
 
  0.583
JG24_16630
Derived by automated computational analysis using gene prediction method- Protein Homology (1171 aa)
         
  0.553
metH
5-methyltetrahydrofolate--homocysteine methyltransferase; One of two methionine synthases in Escherichia coli; MetH catalyzes a methyl transfer reaction from methyltetrahydrofolate to homocysteine to create methionine; requires zinc for activity; Derived by automated computational analysis using gene prediction method- Protein Homology (1227 aa)
         
  0.498
Your Current Organism:
Klebsiella pneumoniae
NCBI taxonomy Id: 573
Other names: ATCC 13883, Bacillus pneumoniae, Bacterium pneumoniae crouposae, CCUG 225, CIP 82.91, DSM 30104, HAMBI 450, Hyalococcus pneumoniae, IFO 14940, K. pneumoniae, Klebsiella pneumoniae, Klebsiella sp. M-AI-2, Klebsiella sp. PB12, Klebsiella sp. RCE-7, LMG 2095, NBRC 14940, NCTC 9633
Server load: low (7%) [HD]