STRINGSTRING
rsfS protein (Klebsiella pneumoniae) - STRING interaction network
"rsfS" - Ribosomal silencing factor RsfS in Klebsiella pneumoniae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
rsfSRibosomal silencing factor RsfS; Functions as a ribosomal silencing factor. Interacts with ribosomal protein L14 (rplN), blocking formation of intersubunit bridge B8. Prevents association of the 30S and 50S ribosomal subunits and the formation of functional ribosomes, thus repressing translation (105 aa)    
Predicted Functional Partners:
rlmH
Ribosomal RNA large subunit methyltransferase H; Specifically methylates the pseudouridine at position 1915 (m3Psi1915) in 23S rRNA; Belongs to the RNA methyltransferase RlmH family (155 aa)
   
  0.978
JG24_05755
Penicillin-binding protein 2 (PBP-2); Derived by automated computational analysis using gene prediction method- Protein Homology (633 aa)
   
      0.837
rplT
50S ribosomal protein L20; Binds directly to 23S ribosomal RNA and is necessary for the in vitro assembly process of the 50S ribosomal subunit. It is not involved in the protein synthesizing functions of that subunit (118 aa)
 
 
  0.829
JG24_05750
Derived by automated computational analysis using gene prediction method- Protein Homology (370 aa)
   
        0.824
JG24_05745
Rare lipoprotein A; Derived by automated computational analysis using gene prediction method- Protein Homology (385 aa)
   
        0.819
rpmF
Some L32 proteins have zinc finger motifs consisting of CXXC while others do not; Derived by automated computational analysis using gene prediction method- Protein Homology; Belongs to the bacterial ribosomal protein bL32 family (57 aa)
   
 
  0.754
metG
Methionine--tRNA ligase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation; Belongs to the class-I aminoacyl-tRNA synthetase family. MetG type 1 subfamily (677 aa)
   
   
  0.721
obgE
GTPase Obg; An essential GTPase which binds GTP, GDP and possibly (p)ppGpp with moderate affinity, with high nucleotide exchange rates and a fairly low GTP hydrolysis rate. Plays a role in control of the cell cycle, stress response, ribosome biogenesis and in those bacteria that undergo differentiation, in morphogenesis control; Belongs to the TRAFAC class OBG-HflX-like GTPase superfamily. OBG GTPase family (392 aa)
 
 
  0.690
putA
Transcriptional regulator; Proline utilization protein A; multifunctional protein that functions in proline catabolism in the first two enzymatic steps resulting in the conversion of proline to glutamate; in Escherichai coli this protein also self-regulates transcription via a DNA-binding domain at the N-terminus; forms dimers and is a peripherally membrane-associated protein; Derived by automated computational analysis using gene prediction method- Protein Homology (1320 aa)
           
  0.688
pheT
Phenylalanine--tRNA ligase beta subunit; Catalyzes a two-step reaction, first charging a phenylalanine molecule by linking its carboxyl group to the alpha-phosphate of ATP, followed by transfer of the aminoacyl-adenylate to its tRNA; forms a tetramer of alpha(2)beta(2); binds two magnesium ions per tetramer; type 2 subfamily; Derived by automated computational analysis using gene prediction method- Protein Homology; Belongs to the phenylalanyl-tRNA synthetase beta subunit family. Type 1 subfamily (795 aa)
 
   
  0.679
Your Current Organism:
Klebsiella pneumoniae
NCBI taxonomy Id: 573
Other names: ATCC 13883, Bacillus pneumoniae, Bacterium pneumoniae crouposae, CCUG 225, CIP 82.91, DSM 30104, HAMBI 450, Hyalococcus pneumoniae, IFO 14940, K. pneumoniae, Klebsiella pneumoniae, Klebsiella sp. M-AI-2, Klebsiella sp. PB12, Klebsiella sp. RCE-7, LMG 2095, NBRC 14940, NCTC 9633
Server load: low (6%) [HD]