STRINGSTRING
purR protein (Klebsiella pneumoniae) - STRING interaction network
"purR" - HTH-type transcriptional repressor PurR in Klebsiella pneumoniae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
purRHTH-type transcriptional repressor PurR; Is the main repressor of the genes involved in the de novo synthesis of purine nucleotides, regulating purB, purC, purEK, purF, purHD, purL, purMN and guaBA expression. PurR is allosterically activated to bind its cognate DNA by binding the purine corepressors, hypoxanthine or guanine, thereby effecting transcription repression (341 aa)    
Predicted Functional Partners:
rbsK
Ribokinase; Catalyzes the phosphorylation of ribose at O-5 in a reaction requiring ATP and magnesium. The resulting D-ribose-5- phosphate can then be used either for sythesis of nucleotides, histidine, and tryptophan, or as a component of the pentose phosphate pathway (309 aa)
   
  0.558
JG24_09745
Transporter; Derived by automated computational analysis using gene prediction method- Protein Homology (463 aa)
       
 
  0.555
cysB
Cys regulon transcriptional activator CysB; LysR-type transcriptional regulator; contains helix-turn-helix (HTH) motif; in Escherichia coli this protein regulates cysteine biosynthesis by controlling expression of the cys regulon; autoregulates expression; crystal structure of Klebsiella aerogenes showed tetramer formation; Derived by automated computational analysis using gene prediction method- Protein Homology (324 aa)
           
  0.433
JG24_07565
Phosphotransferase system, enzyme I; transfers the phosphoryl group from phosphoenolpyruvate (PEP) to the phosphoryl carrier protein HPr; HPr transfers the phosphoryl group to subunit A; subunit IIA transfers a phosphoryl group to subunit IIB; subunit IIB transfers the phosphoryl group to the substrate; part of the phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), a major carbohydrate active-transport system; Derived by automated computational analysis using gene prediction method- Protein Homology (833 aa)
     
 
  0.427
trmE
tRNA modification GTPase MnmE; Exhibits a very high intrinsic GTPase hydrolysis rate. Involved in the addition of a carboxymethylaminomethyl (cmnm) group at the wobble position (U34) of certain tRNAs, forming tRNA- cmnm(5)s(2)U34; Belongs to the TRAFAC class TrmE-Era-EngA-EngB-Septin- like GTPase superfamily. TrmE GTPase family (454 aa)
           
  0.422
JG24_20995
Type 1 fimbriae regulatory protein FimE; Inversion of on/off regulator of fimA; Derived by automated computational analysis using gene prediction method- Protein Homology (202 aa)
           
  0.420
JG24_13715
Uncharacterized protein; Derived by automated computational analysis using gene prediction method- Protein Homology (30 aa)
              0.404
Your Current Organism:
Klebsiella pneumoniae
NCBI taxonomy Id: 573
Other names: ATCC 13883, Bacillus pneumoniae, Bacterium pneumoniae crouposae, CCUG 225, CIP 82.91, DSM 30104, HAMBI 450, Hyalococcus pneumoniae, IFO 14940, K. pneumoniae, Klebsiella pneumoniae, Klebsiella sp. M-AI-2, Klebsiella sp. PB12, Klebsiella sp. RCE-7, LMG 2095, NBRC 14940, NCTC 9633
Server load: low (5%) [HD]