STRINGSTRING
JG24_17870 protein (Klebsiella pneumoniae) - STRING interaction network
"JG24_17870" - Nucleotidase YfbR, HD superfamily in Klebsiella pneumoniae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
JG24_17870Nucleotidase YfbR, HD superfamily; Derived by automated computational analysis using gene prediction method- Protein Homology (199 aa)    
Predicted Functional Partners:
ppnP
Pyrimidine/purine nucleoside phosphorylase; Catalyzes the phosphorolysis of diverse nucleosides, yielding D-ribose 1-phosphate and the respective free bases. Can use uridine, adenosine, guanosine, cytidine, thymidine, inosine and xanthosine as substrates. Also catalyzes the reverse reactions (94 aa)
   
 
    0.916
tmk
Thymidylate kinase; Phosphorylation of dTMP to form dTDP in both de novo and salvage pathways of dTTP synthesis (213 aa)
   
 
    0.904
dut
Deoxyuridine 5’-triphosphate nucleotidohydrolase; This enzyme is involved in nucleotide metabolism- it produces dUMP, the immediate precursor of thymidine nucleotides and it decreases the intracellular concentration of dUTP so that uracil cannot be incorporated into DNA; Belongs to the dUTPase family (152 aa)
       
    0.900
deoD
Purine-nucleoside phosphorylase; Catalyzes the reversible phosphorolysis of ribonucleosides and 2’- deoxyribonucleosides to the free base and (2’-deoxy)ribose-1- phosphate; Derived by automated computational analysis using gene prediction method- Protein Homology (239 aa)
         
    0.900
deoA
Thymidine phosphorylase; The enzymes which catalyze the reversible phosphorolysis of pyrimidine nucleosides are involved in the degradation of these compounds and in their utilization as carbon and energy sources, or in the rescue of pyrimidine bases for nucleotide synthesis; Belongs to the thymidine/pyrimidine-nucleoside phosphorylase family (440 aa)
         
    0.900
JG24_26625
Uridine phosphorylase; Catalyzes the reversible phosphorylytic cleavage of uridine and deoxyuridine to uracil and ribose- or deoxyribose-1- phosphate. The produced molecules are then utilized as carbon and energy sources or in the rescue of pyrimidine bases for nucleotide synthesis; Belongs to the PNP/UDP phosphorylase family (253 aa)
         
    0.900
thyA
Thymidylate synthase; Catalyzes the reductive methylation of 2’-deoxyuridine- 5’-monophosphate (dUMP) to 2’-deoxythymidine-5’-monophosphate (dTMP) while utilizing 5,10-methylenetetrahydrofolate (mTHF) as the methyl donor and reductant in the reaction, yielding dihydrofolate (DHF) as a by-product. This enzymatic reaction provides an intracellular de novo source of dTMP, an essential precursor for DNA biosynthesis (264 aa)
         
    0.900
cdd
Cytidine deaminase; This enzyme scavenges exogenous and endogenous cytidine and 2’-deoxycytidine for UMP synthesis (294 aa)
         
    0.900
cmk
Cytidylate kinase; Catalyzes the formation of (d)CDP from ATP and (d)CMP; Derived by automated computational analysis using gene prediction method- Protein Homology (227 aa)
         
    0.900
JG24_29280
Manganese-dependent 5’-nucleotidase; specific for 5’-UMP, 5’-dUMP, and 5’-dTMP; member of haloacid dehalogenase (HAD)-like hydrolase superfamily; Derived by automated computational analysis using gene prediction method- Protein Homology (225 aa)
       
  0.842
Your Current Organism:
Klebsiella pneumoniae
NCBI taxonomy Id: 573
Other names: ATCC 13883, Bacillus pneumoniae, Bacterium pneumoniae crouposae, CCUG 225, CIP 82.91, DSM 30104, HAMBI 450, Hyalococcus pneumoniae, IFO 14940, K. pneumoniae, Klebsiella pneumoniae, Klebsiella sp. M-AI-2, Klebsiella sp. PB12, Klebsiella sp. RCE-7, LMG 2095, NBRC 14940, NCTC 9633
Server load: low (7%) [HD]