STRINGSTRING
JG24_18125 protein (Klebsiella pneumoniae) - STRING interaction network
"JG24_18125" - Long-chain fatty acid transport protein in Klebsiella pneumoniae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
JG24_18125Long-chain fatty acid transport protein; Derived by automated computational analysis using gene prediction method- Protein Homology (440 aa)    
Predicted Functional Partners:
fadJ
Multifunctional enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase/3-hydroxybutyryl-CoA epimerase; catalyzes the formation of an hydroxyacyl-CoA by addition of water on enoyl-CoA; exhibits 3-hydroxyacyl-CoA epimerase and 3-hydroxyacyl-CoA dehydrogenase activities- forms a heterotetramer with FadI; similar to FadA2B2 complex; involved in the anaerobic degradation of long and medium-chain fatty acids in the presence of nitrate; Derived by automated computational analysis using gene prediction method- Protein Homology (714 aa)
   
   
  0.639
JG24_20260
Serine transporter; Derived by automated computational analysis using gene prediction method- Protein Homology (429 aa)
           
  0.594
fadB
Multifunctional fatty acid oxidation complex subunit alpha; Includes enoyl-CoA hydratase, delta(3)-cis-delta(2)-trans-enoyl-CoA isomerase, 3-hydroxyacyl-CoA dehydrogenase, and 3-hydroxybutyryl-CoA epimerase; catalyzes the formation of an hydroxyacyl-CoA by addition of water on enoyl-CoA; also exhibits 3-hydroxyacyl-CoA epimerase and 3-hydroxyacyl-CoA dehydrogenase activities; forms a heterotetramer with FadA; similar to FadI2J2 complex; functions in beta-oxidation of fatty acids; Derived by automated computational analysis using gene prediction method- Protein Homology (729 aa)
   
   
  0.584
JG24_07295
Serine transporter; Derived by automated computational analysis using gene prediction method- Protein Homology (429 aa)
           
  0.557
fadR
Fatty acid metabolism regulator protein; Multifunctional regulator of fatty acid metabolism (239 aa)
   
     
  0.546
JG24_20890
Serine transporter; Derived by automated computational analysis using gene prediction method- Protein Homology (409 aa)
           
  0.540
JG24_07410
Outer membrane protein A; OmpA is believed to be a porin, involved in diffusion of nonspecific small solutes across the outer membrane. It is the most abundant integral protein of the outer membrane of E. coli, and it is known to play a role as a phage receptor, a mediator of F-factor dependent conjugation, and in maintaining the structural shape of the outer membrane; 3a; II*; G; d; Derived by automated computational analysis using gene prediction method- Protein Homology (358 aa)
         
  0.538
metH
5-methyltetrahydrofolate--homocysteine methyltransferase; One of two methionine synthases in Escherichia coli; MetH catalyzes a methyl transfer reaction from methyltetrahydrofolate to homocysteine to create methionine; requires zinc for activity; Derived by automated computational analysis using gene prediction method- Protein Homology (1227 aa)
         
  0.507
fadE
Butyryl-CoA dehydrogenase; Functions in fatty acid oxidation; converts acyl-CoA and FAD to FADH2 and delta2-enoyl-CoA; Derived by automated computational analysis using gene prediction method- Protein Homology (814 aa)
 
   
  0.483
JG24_15670
Long-chain-fatty-acid--CoA ligase; Activates fatty acids by binding to coenzyme A; Derived by automated computational analysis using gene prediction method- Protein Homology (572 aa)
   
   
  0.461
Your Current Organism:
Klebsiella pneumoniae
NCBI taxonomy Id: 573
Other names: ATCC 13883, Bacillus pneumoniae, Bacterium pneumoniae crouposae, CCUG 225, CIP 82.91, DSM 30104, HAMBI 450, Hyalococcus pneumoniae, IFO 14940, K. pneumoniae, Klebsiella pneumoniae, Klebsiella sp. M-AI-2, Klebsiella sp. PB12, Klebsiella sp. RCE-7, LMG 2095, NBRC 14940, NCTC 9633
Server load: low (12%) [HD]