STRINGSTRING
JG24_18935 protein (Klebsiella pneumoniae) - STRING interaction network
"JG24_18935" - Sialic acid utilization regulator, RpiR family in Klebsiella pneumoniae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
JG24_18935Sialic acid utilization regulator, RpiR family; Derived by automated computational analysis using gene prediction method- Protein Homology (282 aa)    
Predicted Functional Partners:
JG24_18940
4Fe-4S ferredoxin, iron-sulfur binding; Derived by automated computational analysis using gene prediction method- Protein Homology (86 aa)
              0.660
murQ
N-acetylmuramic acid 6-phosphate etherase; Specifically catalyzes the cleavage of the D-lactyl ether substituent of MurNAc 6-phosphate, producing GlcNAc 6- phosphate and D-lactate. Together with AnmK, is also required for the utilization of anhydro-N-acetylmuramic acid (anhMurNAc) either imported from the medium or derived from its own cell wall murein, and thus plays a role in cell wall recycling; Belongs to the GCKR-like family. MurNAc-6-P etherase subfamily (300 aa)
 
   
  0.647
JG24_23005
COG1242- Predicted Fe-S oxidoreductase; Derived by automated computational analysis using gene prediction method- Protein Homology (311 aa)
 
            0.565
JG24_11235
Glucokinase regulatory protein; Derived by automated computational analysis using gene prediction method- Protein Homology (307 aa)
 
   
  0.553
JG24_18930
Uncharacterized protein; Derived by automated computational analysis using gene prediction method- Protein Homology (211 aa)
              0.513
JG24_05925
Phosphoenolpyruvate-dependent sugar phosphotransferase system; catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane; IIB is phosphorylated by IIA and then transfers the phosphoryl group to the sugar; IIC forms the translocation channel; Derived by automated computational analysis using gene prediction method- Protein Homology (651 aa)
 
   
  0.454
murP
PTS system N-acetylmuramic acid transporter subunits IIBC; Belongs to PEP-dependent PTS system; catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane; IIB is phosphorylated by IIA and then transfers the phosphoryl group to the sugar; IIC forms the translocation channel; requires crr-encoded enzyme IIA-glucose component; Derived by automated computational analysis using gene prediction method- Protein Homology (476 aa)
 
   
  0.448
tadA
tRNA-specific adenosine deaminase; Catalyzes the deamination of adenosine to inosine at the wobble position 34 of tRNA(Arg2); Belongs to the cytidine and deoxycytidylate deaminase family (169 aa)
              0.409
Your Current Organism:
Klebsiella pneumoniae
NCBI taxonomy Id: 573
Other names: ATCC 13883, Bacillus pneumoniae, Bacterium pneumoniae crouposae, CCUG 225, CIP 82.91, DSM 30104, HAMBI 450, Hyalococcus pneumoniae, IFO 14940, K. pneumoniae, Klebsiella pneumoniae, Klebsiella sp. M-AI-2, Klebsiella sp. PB12, Klebsiella sp. RCE-7, LMG 2095, NBRC 14940, NCTC 9633
Server load: low (6%) [HD]