STRINGSTRING
ppnK protein (Klebsiella pneumoniae) - STRING interaction network
"ppnK" - Inorganic polyphosphate kinase in Klebsiella pneumoniae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ppnKInorganic polyphosphate kinase; Catalyzes the phosphorylation of NAD to NADP; Derived by automated computational analysis using gene prediction method- Protein Homology (292 aa)    
Predicted Functional Partners:
JG24_05775
Derived by automated computational analysis using gene prediction method- Protein Homology (216 aa)
   
 
  0.953
nadE
NH(3)-dependent NAD(+) synthetase; Catalyzes the ATP-dependent amidation of deamido-NAD to form NAD. Uses ammonia as a nitrogen source (275 aa)
   
 
  0.950
JG24_29350
Catalyzes the formation of NAD(+) from nicotinamide ribonucleotide; catalyzes the formation of nicotinamide mononucleotide from nicotinamide riboside; also has a regulatory function; Derived by automated computational analysis using gene prediction method- Protein Homology (410 aa)
   
 
  0.918
nudC
NADH pyrophosphatase; Can catalyze hydrolysis of broad range of dinucleotide pyrophosphates but prefers reduced form of NADH; requires divalent metal ions such as magnesium and manganese and produces two mononucleoside 5’-phosphates; Derived by automated computational analysis using gene prediction method- Protein Homology (257 aa)
     
 
  0.906
mazG
Nucleoside triphosphate pyrophosphohydrolase MazG; Functions in degradation of stringent response intracellular messenger ppGpp; in Escherichia coli this gene is co-transcribed with the toxin/antitoxin genes mazEF; activity of MazG is inhibited by MazEF in vitro; ppGpp inhibits mazEF expression; MazG thus works in limiting the toxic activity of the MazF toxin induced during starvation; MazG also interacts with the GTPase protein Era; Derived by automated computational analysis using gene prediction method- Protein Homology (263 aa)
         
    0.900
pntA
NAD(P) transhydrogenase subunit alpha; The transhydrogenation between NADH and NADP is coupled to respiration and ATP hydrolysis and functions as a proton pump across the membrane (509 aa)
         
  0.851
pntB
NAD(P) transhydrogenase subunit beta; Catalyzes reversible transfer of hydride ion equivalent between NAD and NADP; membrane-bound proton pump that translocates protons from cytosolic to periplasmic side of the inner membrane; forms a tetramer composed of two alpha and 2 beta subunits; AB-stereospecific enzyme; Derived by automated computational analysis using gene prediction method- Protein Homology (462 aa)
     
 
  0.835
sthA
Soluble pyridine nucleotide transhydrogenase; Conversion of NADPH, generated by peripheral catabolic pathways, to NADH, which can enter the respiratory chain for energy generation; Belongs to the class-I pyridine nucleotide-disulfide oxidoreductase family (466 aa)
         
  0.824
JG24_19210
DNA repair protein RecN; Derived by automated computational analysis using gene prediction method- Protein Homology (553 aa)
   
   
  0.773
grpE
Protein GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP- dependent [...] (196 aa)
              0.694
Your Current Organism:
Klebsiella pneumoniae
NCBI taxonomy Id: 573
Other names: ATCC 13883, Bacillus pneumoniae, Bacterium pneumoniae crouposae, CCUG 225, CIP 82.91, DSM 30104, HAMBI 450, Hyalococcus pneumoniae, IFO 14940, K. pneumoniae, Klebsiella pneumoniae, Klebsiella sp. M-AI-2, Klebsiella sp. PB12, Klebsiella sp. RCE-7, LMG 2095, NBRC 14940, NCTC 9633
Server load: low (11%) [HD]