STRINGSTRING
nlpD protein (Klebsiella pneumoniae) - STRING interaction network
"nlpD" - Outer membrane lipoprotein involved in stationary-phase cell survival in Klebsiella pneumoniae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
nlpDOuter membrane lipoprotein involved in stationary-phase cell survival; similar to LppB virulence determinant from Haemophilus somnus; Derived by automated computational analysis using gene prediction method- Protein Homology (378 aa)    
Predicted Functional Partners:
pcm
Protein-L-isoaspartate O-methyltransferase; Catalyzes the methyl esterification of L-isoaspartyl residues in peptides and proteins that result from spontaneous decomposition of normal L-aspartyl and L-asparaginyl residues. It plays a role in the repair and/or degradation of damaged proteins (208 aa)
       
  0.800
surE
5’/3’-nucleotidase SurE; Nucleotidase with a broad substrate specificity as it can dephosphorylate various ribo- and deoxyribonucleoside 5’- monophosphates and ribonucleoside 3’-monophosphates with highest affinity to 3’-AMP. Also hydrolyzes polyphosphate (exopolyphosphatase activity) with the preference for short-chain- length substrates (P20-25). Might be involved in the regulation of dNTP and NTP pools, and in the turnover of 3’-mononucleotides produced by numerous intracellular RNases (T1, T2, and F) during the degradation of various RNAs (253 aa)
 
   
  0.790
surA
Chaperone SurA; Chaperone involved in the correct folding and assembly of outer membrane proteins. Recognizes specific patterns of aromatic residues and the orientation of their side chains, which are found more frequently in integral outer membrane proteins. May act in both early periplasmic and late outer membrane-associated steps of protein maturation (428 aa)
 
     
  0.775
rpoS
RNA polymerase sigma factor RpoS; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released; this sigma factor controls a regulon of genes required for protection against external stresses; Derived by automated computational analysis using gene prediction method- Protein Homology (330 aa)
 
   
  0.726
ftsB
Cell division protein FtsB; Essential cell division protein. May link together the upstream cell division proteins, which are predominantly cytoplasmic, with the downstream cell division proteins, which are predominantly periplasmic (105 aa)
 
     
  0.681
JG24_07100
Cell division protein FtsK; Derived by automated computational analysis using gene prediction method- Protein Homology; Belongs to the FtsK/SpoIIIE/SftA family (1373 aa)
   
   
  0.664
ftsX
Cell division protein FtsX; ABC transporter, membrane protein; Derived by automated computational analysis using gene prediction method- Protein Homology (351 aa)
 
 
 
  0.627
JG24_20095
Derived by automated computational analysis using gene prediction method- Protein Homology (236 aa)
              0.583
ispF
2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase; Catalyzes the conversion of 4-diphosphocytidyl-2-C-methyl-D-erythritol 2-phosphate into 2-C-methyl-D-erythritol 2,4-cyclodiphosphate; Derived by automated computational analysis using gene prediction method- Protein Homology (159 aa)
              0.583
truD
tRNA pseudouridine synthase D; Responsible for synthesis of pseudouridine from uracil- 13 in transfer RNAs (349 aa)
              0.583
Your Current Organism:
Klebsiella pneumoniae
NCBI taxonomy Id: 573
Other names: ATCC 13883, Bacillus pneumoniae, Bacterium pneumoniae crouposae, CCUG 225, CIP 82.91, DSM 30104, HAMBI 450, Hyalococcus pneumoniae, IFO 14940, K. pneumoniae, Klebsiella pneumoniae, Klebsiella sp. M-AI-2, Klebsiella sp. PB12, Klebsiella sp. RCE-7, LMG 2095, NBRC 14940, NCTC 9633
Server load: low (9%) [HD]